Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ПЛУТОНИЙ

ПЛУТОНИЙ (от назв. планеты Плутон; лат. Plutonium) Pu, искусств. радиоактивный хим. элемент III гр. периодич. системы, ат. н. 94, ат. м. 244,0642; относится к актиноидам. Стабильных изотопов не имеет. Известны 15 изотопов с мае. ч. 232-246. Наиб. долгоживущие изотопы - 244Pu (T1/2 8,26·107 лет), 242Pu (T1/2 3,76 · 105 лет, поперечное сечение захвата тепловых нейтронов s 1,9· 10- 27 м2), 239 Pu (T1/2 2,41 ·104 лет, s 2,71 · 10- 26м2) и 238Pu (T1/2 87,74 г, s 5 ·10 -26 м2)-a-излучатели. В природе плутоний встречается в ничтожных кол-вах в урановых рудах (239 Pu); он образуется из U под действием нейтронов, источниками к-рых являются р-ции (a,n), протекающие при взаимод. a-частиц с легкими элементами (входящими в состав руд), спонтанное деление ядер U и космич. излучение. Конфигурация внеш. электронных оболочек атома 5s2 5p65d105f 66s26p67s2; степень окисления от + 3 до + 7, наиб. устойчива + 4; электроотрицательность по Полингу 1,2; атомный радиус 0,160 нм, ионные радиусы Pu3+, Pu4+, Pu5+ и Pu6+ соотв. 0,0974, 0,0896, 0,087 и 0,081 нм.

Свойства. Плутоний-хрупкий серебристый металл. Существует в шести кристаллич. модификациях (табл. 1); т. пл. 6400C, т. кип. 33520C; рентгеновская плотн. 19,86 г/см3; 3554-2.jpg 32,77 Дж/(моль · К); 3554-3.jpg 56,46 Дж / (моль · К); ур-ние температурной зависимости давления пара над жидким плутонием: lg p (мм рт. ст.) = -17120/T+ 4,592 (1210-1620 К); теплопроводность 0,033 Вт/(см·К) (313 К); r 145 мкОм·см для a-Pu; парамаг-нетик, магн. восприимчивость изменяется от 2,52· 10-6 (при 1400C, b-Pu) до 2,35·10- 6 (4000C, d-Pu); g жидкого плутония при 6400C (0,437-0,475)· 10- 2 Н/см; ур-ние температурной зависимости вязкости lg h = 672/T+ 0,037 (920- 1220 К); при нагр. от 3100C до 4800C сжимается.

Компактный плутоний медленно окисляется на воздухе, порошок и стружка пирофорны; медленно взаимод. с водой, раств. в соляной к-те, HClO4, HBr и H3PO4, пассивируется конц. HNO3, CH3COOH и H2SO4; в р-рах щелочей заметно не растворяется. При 50-3000C плутоний взаимод. с H2, давая гидрид PuH2+х (x = 0-0,7)-черные кристаллы с кубич. гра-нецентрир. решеткой. При избытке H2 образуется три-гидрид PuH3-черные кристаллы с гексагон. решеткой (а = 0,378 нм, с = 0,676 нм, пространств. группа P63/mmc); 3554-4.jpg — 193,2 кДж/моль. Для дигидрида PuH2 3554-5.jpg -156,7 кДж/моль (923 К); ур-ние температурной зависимости давления разложения: lgp 1(мм рт. ст.) = 10,01 — 8156/T (400-800 К); выше 400 0C в вакууме разлагается с образованием мелкодисперсного плутония; на воздухе быстро окисляется при 150 0C; разлагается соляной и серной к-тами; используют в качестве исходного в-ва для синтеза др. соед. Pu.

При прокаливании оксалата, пероксида и др. соединений плутония на воздухе или в атмосфере O2 при 700-1000 0C получают диоксид PuO2; ур-ние температурной зависимости давления пара: lg p (мм. рт. ст.) = 8,072 - 29240/T(2000-2400 К); не раств. в воде и орг. р-рителях, медленно взаимод. с горячей смесью конц. HNO3 с HF (см. также табл. 2); PuO2-весовая форма при определении плутония, его используют также для приготовления топлива в ядерной энергетике. Сескви-оксид Pu2O3 (т. пл. 2085 0C), синтезированный нагреванием PuO2 и углерода в токе Не при 16250C, имеет гексагон. кристаллич. решетку (а = 0,3841 нм, с = 0,5958 нм, пространств. группа Р3тb); 3554-6.jpg — 1688,6 кДж/моль; Pu2O3, полученный восстановлением PuO2 металлическим плутонием или гидридом плутония при 1500 0C, - кристаллы с кубич. объемноцент-рир. решеткой (а = 1,104 нм, пространств. группа Ia3, a-форма) или с кубич. гранецентрир. решеткой (а = 0,5409 нм, a'-форма).

Гидраты пероксида PuO4·nH2O (п = 2, 3) образуются при добавлении H2O2 к кислым р-рам соединений плутония; плохо раств. в воде и орг. р-рителях; при нагр. превращ. в PuO2. Гидр оксид Pu(OH)4 · xH2O получают при действии щелочи на r-ры Pu4 + ; произведение р-римости 7·10-56, р-римость при 25 0C в 1 M р-ре Na2SO4 (рН 6,2) 5,9 мг/мл, в 1 M р-ре Na2CO3-1,572 мг/л, в насыщ. р-ре KCl-6,92 · 10 -6 моль/л.

Гексафторид PuF6-T. кип. 62,20C; 3554-7.jpg 220,7 Дж/(моль·К); ур-ния температурной зависимости давления пара: над твердым PuF6 lg p (мм рт. ст.) = — 2095/T+ 3,499 (273-324,59 К), над жидким- lg p (мм рт. ст.) = - 1807,5/T- 1,5340 (324,59 — 350,17 К); сильный фторирующий агент и окислитель; бурно реагирует с водой; получают действием F2 на PuF4 или PuO2 при 600-7000C. Тетрафторид PuF4 -т. кип. 12770C; С0р 116,36 Дж/(моль·К); 3554-8.jpg 167,14 Дж/(моль·К); ур-ние температурной зависимости давления пара: lg p (мм рт. ст.) = 5,58 - 10040/T (700-1200 К); плохо раств. в воде и орг. р-рителях; получают нагреванием PuO2 или PuF3 в токе HF и O2 при 450-6000C. Трифторид PuF3, трихлорид PuCl3 (т. кип. 17670C) и трибромид PuBr3 синтезируют взаимод. PuO2 соотв. с безводным HF (при 250-3000C), HCl (CCl4 или SCl2 выше 7500C) и HBr (при 8000C), трииодид PuI3-взаимод. безводного газообразного HI с металлическим плутонием при 4500C.

Табл. 1.-ХАРАКТЕРИСТИКА КРИСТАЛЛИЧЕСКИХ МОДИФИКАЦИЙ ПЛУТОНИЯ

Кристаллич. модификация

Область существования, 0C

Сингония

Пространств. группа

Параметры решетки

DН перехода, кДж/моль

а, им

b, нм

c, нм

угол, град

a-Pu

до 122

Моноклинная

P21/m

0,6183

0,4822

1,096

101,79

3,43 (3554-9.jpg)

b-Pu

122-207

Моноклинная

I2тс

0,9284

1,046

0,786

92,13

0,565 (3554-10.jpg)

g-Pu

207-315

Ромбич.

Fddd

0,3158

0,5768

1,016


0,586 (3554-11.jpg)

d-Pu

315-457

Кубич.

Fm3m

0,4637




0,084 (3554-12.jpg)

d'-Pu

457-472

Тетрагон.

I4/mmm

0,3327


0,4482


1,841 (3554-13.jpg)

e-Pu

479-640

Кубич.

Im3m

0,3636




2,824 (3554-14.jpg)

Табл. 2.-ХАРАКТЕРИСТИКА СОЕДИНЕНИЙ ПЛУТОНИЯ

Соединение

Цвет

Сингония

Параметры решетки

Плотн.,

г/см3

T. пл., 0C

3554-15.jpg

кДж/моль

а, нм

b, нм

c, нм

PuO2

Оливково-зеленый

Кубич.

0,5396

_

_

11,44

2390

-1055,03

PuF62

Желтовато-коричневый

Ромбич.





51,59

-1857

PuF4

Розовый

Моноклинная

1,259

1,055

0,826

7,0

1037

-1833

PuF3

Фиолетовый

Гексаген.

0,408

-

0,724

9,32

1426

-1562,2(0 K)

PuCI3

Изумрудно- зеленый

Гексаген.

0,738


0,4238

5,70

765

-960,3

РuBr3

Зеленый

Ромбич.

1,262

0,409

0,913

6,69

681

-741,2

PuI3

Светло-зеленый

Ромбич.

1,40

0,429

0,990

6,93

770

-541,8

PuOF

Металлич. блеск

Тетрагон.

0,570



9,76

>1635


РuOCl

Сине-зеленый

Тетрагон.

0,400

_

0,677

8,81

_

-927,1

PuOBr

Темно-зеленый

Тетрагон.

0,401

_

0,7556

9,07

_

-871,5

PuOI

Зеленый

Тетрагон.

0,403

_

0,9151

8,46

_

-794,2

PuS

Золотисто-бронзовый

Кубич.

0,553


-

10,60

2350

-364,0

Pu2S3-Pu3S4

Черный

Кубич.

0,845



8,41-9,28

1725


Pu2O2S

Металлич. блеск

Гексаген.

0,392


0,676

9,95



PuP

Темно-серый

Кубич.

0,566

_

__

9,87

2600

-

PuSi

-

Ромбич.

0,5727

0,7933

0,3847

10,15

1578

_

Pu2Si3

Серебристо-серый

Ромбич.

0,3816

0,105

0,409

8,77

1770


PuSi2

Серебристый

Тетрагон.

0,396


1,372

9,08

1640

-836


Моносульфид PuS синтезируют восстановлением PuF3 парами Ba в тигле, изготовленном из BaS, при 12500C, действием паров S на металлический плутоний (стружка) при 300 0C или нагреванием гидридов плутония в токе H2S до 400-6000C. Сульфид состава Pu2S3-Pu3S4 получен нагреванием PuCl3 в токе H2S при 840-9160C. Известен монофосфид PuP, к-рый образуется при взаимодействии плутония с парами P при 650-8050C. Соединения плутония с кремнием-моносили-цид PuSi, сесквисилицид Pu2Si3 и дисилицид PuSi2-синтезируют взаимод. PuO2, PuF3 или металлического плутония соотв. с SiC, Si и CaSi2 при высоких т-рах.

Формальные окислит. потенциалы плутония (в В) в 1 M р-ре HClO4:

3554-16.jpg

Плутоний в степени окисления + 7 впервые получили в 1967 H. H. Крот и А. Д. Гельман окислением 3554-17.jpg озоном в щелочной среде. В кислых водных р-рах плутоний существует в виде ионов Pu3+ (для водного р-ра 3554-18.jpg—591,2 кДж/моль, цвет в р-ре сине-фиолетовый), Pu4+ (для водного р-ра 3554-19.jpg — 541,3 кДж/моль, желто-коричневый),3554-20.jpg (для водного р-ра 3554-21.jpg— 923,8 кДж / моль, светло-розовый), 3554-22.jpg (для водного р-ра 3554-23.jpg— 819,6 кДж/моль, розово-оранжевый). Ионы Pu4+ и PuO+2 в водных р-рах диспропорционируют:

3554-24.jpg

3554-25.jpg

Склонность ионов плутония к диспропорционированию и комплек-сообразованию уменьшается в ряду Pu4+>Pu3+> > 3554-26.jpg >3554-27.jpg. Pu(IV) можно получить окислением Pu(III) в кислых р-рах ионами 3554-28.jpg, 3554-29.jpg 3554-30.jpg 3554-31.jpg_и Ce4 +, а также при восстановлении Pu(VI) ионами Fe2+, I- , 3554-32.jpg . Pu(IV) образует полимерные цепи даже в кислых р-рах, скорость полимеризации определяется концентрацией к-ты и плутония, присутствием др. ионов и т-рой. Pu(VI) можно получить окислением Pu(III) или Pu(IV) в р-рах HNO3 ионами Ag2+, 3554-33.jpg, 3554-34.jpg или 3554-35.jpg в разб. HClO4, а также действием O3, Ce4+.

Получение. Наиб. важный в практич. отношении изотоп 239Pu получают в ядерных реакторах при длит. облучении нейтронами прир. или обогащенного U:

3554-36.jpg

При захвате нейтронов 239Pu образуются более тяжелые изотопы плутония с мас. ч. 240-242:

3554-37.jpg

Одновременно в результате ядерной р-ции образуется 238Pu:

3554-38.jpg

Обычно содержание 239Pu в смеси составляет 90-95%, 240Pu-1-7%, содержание др. изотопов не превышает десятых долей процента. Долгоживущие изотопы Pu и 244Pu получают при длит. облучении нейтронами 239Pu. Выход 242Pu составляет неск. десятков процентов, a 244Pu - доли процента от содержания 242Pu. Весовые кол-ва изотопно чистого 238Pu образуются при облучении нейтронами 237Np. Легкие изотопы плутония с мас. ч. 232-237 обычно получают на циклотроне при облучении изотопов U a-частицами. Выделение и очистку изотопов плутония осуществляют преим. экстракционными и сорбционными методами. Для пром. произ-ва 239Pu используют пьюрекс-процесс, основанный на экстракции трибутилфосфатом в легком разбавителе. В первом цикле осуществляют совместную очистку Pu и U от продуктов деления, а затем их разделение. Во втором и третьем циклах плутоний подвергают дальнейшей очистке и концентриро-ванию. Металлический плутоний получают восстановлением PuF4 или PuCl3 кальцием или магнием.

Применение. Изотоп 239Pu (наряду с U) используют в качестве ядерного топлива энергетич. реакторов, работающих на тепловых и особенно на быстрых нейтронах, а также при изготовлении ядерного оружия. Критич. масса для 239Pu в виде металла составляет 5,6 кг. Изотоп 239Pu является также исходным в-вом для получения в ядерных реакторах трансплутониевых элементов. 238Pu применяют в малогабаритных ядерных источниках электрич. тока, используемых в космич. исследованиях, а также в стимуляторах сердечной деятельности человека.

Произ-во плутония в капиталистич. странах составляет неск. десятков т в год.

Плутоний высокотоксичен; ПДК для 239Pu в открытых водоемах и в воздухе рабочих помещений составляет соотв. 81,4 и 3,3·10-5Бк/л.

Впервые плутоний получили и идентифицировали в 1940 Г. Си-борг, Э. Макмиллан, Дж. Кеннеди и А. Валь.

Лит.: Плутоний. Справочник, под ред. О. Вика, пер. с англ., M., 1971; Громов Б. В., Савельева В. И., Шевченко В. Б., Химическая технология облученного ядерного топлива, M., 1983; Мефодьева M. П., Крот H. H., Соединения трансурановых элементов, M., 1987; Cleveland J. M., The chemistry of plutonium, N.Y., 1970. Б. Ф. Мясоедов.

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн