Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ПИРИМИДИНОВЫЕ ОСНОВАНИЯ

ПИРИМИДИНОВЫЕ ОСНОВАНИЯ, производные пиримидина, входящие в состав нуклеиновых к-т, нуклео-тидов, коферментов и др. Канонич. пиримидиновые основания -цитозин (4-амино-2-пиримидон, сокращенно С), тимин (3-метил-пиримидин-2,4-дион, T) и урацил (пиримидин-2,4-дион, U); разл. формы молекул. Пиримидиновые основания (они существуют при разных значениях рН) показаны на схеме.

3543-2.jpg

Кроме канонических пиримидиновых оснований в состав нуклеиновых к-т входят т. наз. минорные пиримидиновые основания (см. Минорные нуклеозиды), гл. обр. замещенные по атому С-5-5-метил- и 5-гидроксиме-тилцитозин, 5-карбоксиметилурацил, а также 5,6-дигидро-урацил, N4-метилцитозин и др.

Специфич. наборы водородных связей между пирими-диновыми и пуриновыми основаниями в комплементарных участках цепей (см. Комплементарностъ), а также межплоскостные взаимод. между соседними основаниями в цепи определяют формирование и стабилизацию вторичной и третичной структуры нуклеиновых к-т. Последовательность пуриновых и пиримидиновых оснований в полинуклеотидной цепи определяет генетич. информацию ДНК и матричных РНК. Модификация пиримидиновых оснований в полинуклеотидах под воздействием мутагенов может приводить к изменению информац. смысла (точковой мутации).

Пиримидиновые основания представляют собой высокоплавкие (т. пл. 3543-3.jpg300 0C) бесцв. кристаллич. соед., умеренно раств. в горячей воде, не раств. в этаноле и диэтиловом эфире. Существуют в тауто-мерных формах (константы таутомерного равновесия 3543-4.jpg105), напр.:

3543-5.jpg

3543-6.jpg

Мол. м

УФ спектры

pKa

Форма молекулы

3543-7.jpg

нм

3543-8.jpg

111,1

275

10,03

4,5-4,7;

нейтральная

268

6,09

12,1-12,3

283

8,09


112,1

нейтральная

258

8,20

9,35-9,50;

моноанион

282

5,90

13,9

дианион

273

7,17


126,1

центральная

265

7,90

9,9; 13,9

моноанион

293

5,19


дианион

280

5,97


Наиб. характерные р-ции пиримидиновых оснований с нуклеофилами - присоединение по связи C=C (гидросульфита, гидроксиламина, галогена и др.) и замещение экзоциклич. аминогруппы цитозина (напр., р-ции с гидроксиламинами, гидразинами). Последняя р-ция значительно облегчается при насыщении связи C=C. Восстановление двойной связи C=C легко осуществляется путем каталитич. гидрирования или действием NaBH4 при УФ облучении. Атом H у С-5 легко замещается на гидрокси- или аминометильную группу, галоген. При действии P2S5 один или оба атома О в урациле и тимине могут замещаться на атом S. При действии на цитозин HNO2 происходит его дезаминирование с образованием урацила.

Р-ции пиримидиновых оснований с электроф. реагентами (наиб. изучено алкилирование) идут преим. по атомам N-1 и N-3, в меньшей степени - по экзоциклич. аминогруппе цитозина. В щелочной среде идет также алкилирование по атомам О. Довольно легко протекает ацилирование аминогруппы цитозина.

При радиолизе водных р-ров пиримидиновых оснований образуются 5,6-дигид-рокси-, 5-гидрокси-6-гидроперокси- и 5-гидроперокси-6-гидрокси-5,6-дигидропиримидины и продукты их дальнейших превращений. Действие УФ излучения (l > 200 нм) на водные р-ры пиримидиновых оснований приводит к образованию 5,6-дигидро-6-гидроксипиримидинов (фотогидратов), циклобутановых димеров (через триплетное состояние) с раскрытием связей C=C, нециклобутановых димеров пиримидиновых оснований (через нижнее синглетное возбужденное состояние). Фотогидраты спонтанно превращ. в исходные соед., а циклобутановые димеры дедимеризуются фотохимически.

Различие реакц. способности пиримидиновых оснований позволяет избирательно модифицировать их в составе полинуклеотидов. Такие р-ции лежат в основе определения нуклеотидной последовательности (первичной структуры) нуклеиновых к-т. Взаимод. с соседними основаниями, зависящие от локальной высшей структуры полинуклеотидов, оказывают влияние на скорость модификации пиримидиновых оснований при действии разл. агентов. В связи с этим сопоставление относит. скоростей модификации пиримидиновых оснований используется для изучения вторичной и третичной структуры нуклеиновых к-т.

Как канонические, так и минорные пиримидиновые основания обычно получают препаративно из нуклеиновых к-т путем кислотного гидролиза и послед. разделения.

Лит.: Кочетков H. К. [и др.], Органическая химия нуклеиновых кислот, M., 1970; Бородавкин А. В. [и др.], Электронная структура, УФ-спектры поглощения и реакционная способность компонентов нуклеиновых кислот, в сб.: Итоги науки и техники, сер. Молекулярная биология, т. 14, M., 1977; Шаба-ров а 3. А., Богданов А. А., Химия нуклеиновых кислот и их компонентов, M., 1978; Photochemistry and photobiology of nucleic acids, v. 1 (Chemistry), ed. by Shi Yi Wang. N. Y., 1976. Э.И. Будовский.

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн