Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ПЕЧИ

ПЕЧИ. Промышленные печи-устройства с камерой, огражденной от окружающей среды, предназначенные для получения материалов и изделий при тепловом воздействии на исходные в-ва. Теплота выделяется в результате горения топлива или превращения электрич. (реже солнечной) энергии. Осн. части печи: теплогенератор (источник тепла); рабочая камера, в к-рой находятся материалы или изделия; теплоотборник, служащий для охлаждения изделий после их термич. обработки; устройства для подвода топлива или электрич. энергии, а также для отвода продуктов сгорания; механизмы для загрузки, транспортировки через печь и выгрузки материалов или изделий; система автоматич. управления работой печи; строит. конструкции (фундамент, футеровка для ограждения рабочей камеры от окружающей среды, каркас для обеспечения необходимой прочности и крепления горелок или форсунок, кожух для герметизации печи и обеспечения ее прочности); устройства для утилизации тепла и продуктов сгорания топлива (рекуператоры, регенераторы). В большинстве печей теплогенераторы и теплоот-борники совмещены с рабочей камерой.

Классификация. Печи классифицируют по термотехнол., теп-лотехн. и мех. характеристикам, а также с учетом конструктивных особенностей, состояния и Cв-в печной среды (смеси в-в в рабочей камере кроме исходных материалов и целевых продуктов). По термотехнол. признакам печи подразделяют на физические, в к-рых получение продукта основано на целенаправленных физ. превращ. исходных материалов без хим. взаимод. между ними, и химические, в к-рых получение продукта основано на целенаправленных хим. взаимод. между исходными материалами. По характеру течения тер-мотехнол. процесса во времени различают печи периодического и печи непрерывного действия.

По теплотехн. признакам печи подразделяют след. образом. В зависимости от источника тепла выделяют. экзотермич. (или пламенные), электротермич. (или электрич.), оптич. (в т.ч. гелиотермич., или солнечные) и смешанные печи. В экзотермических печах источником тепла м. б. исходные материалы, вводимое топливо (газообразное, жидкое либо твердое) или и то и другое одновременно. Электротермические печи подразделяют на печи сопротивления, дуговые, дуговые печи сопротивления, электроннолучевые и индукционные. Различают также печи с теплогенерацией в рабочей камере и вне ее, со встроенными рекуператорами или без них, а также проходные (однократные) и рециркуляционные (многократные), в к-рых газообразный теплоноситель в рабочей камере используется соотв. один или много раз. В зависимости от вида теплообмена выделяют конвекционные, радиационные, кондуктивные и смешанные печи.

По мех. признакам печи подразделяются след. образом: по способу транспортировки исходных материалов и полученных продуктов-на конвейерные, роликовые, рольганговые, вагонеточные и др.; по характеру движения газовых потоков в рабочих камерах-на печи с криволинейными (круговыми, циклонными и др.) или прямолинейными потоками; по взаимной ориентации потоков исходных материалов и продуктов-на прямоточные, противоточные и перекрестные.

Различают печи контролируемого и неконтролируемого хим. состава, вакуумные или работающие под давлением. Печи бывают с газовой, жидкой, твердой или смешанной печной средой. Последняя состоит из продуктов сгорания топлива, отходов физ. и хим. превращений исходных материалов и из специально вводимых компонентов, необходимых для защиты исходных материалов и продуктов от нежелат. хим. воздействий.

По конструктивным признакам печи подразделяются на шахтные, туннельные, кольцевые, ретортные, муфельные, тигельные, горшковые, ванные, трубчатые, полочные, камерные, вращающиеся, колпачковые, ямные, секционные, многоподовые с пульсирующим или шагающим подом и т.д.

Основные показатели работы печей-производительность, тепловая мощность, кпд. Производительность обычно измеряют кол-вом исходного материала (сырья), проходящего через нее в единицу времени, или кол-вом продукта, получаемого за определенное время, и выражается в т/ч или т/сут. Тепловая мощность, или полезная тепловая нагрузка (иногда наз. также теплопроизводительностью), соответствует кол-ву тепла, воспринимаемого сырьем в печи в единицу времени; выражается в МВт. Кпд показывает, насколько эффективно используется тепло, получаемое при сжигании топлива, и составляет обычно 0,6-0,8.

Процессы, протекающие в печах. В рабочей камере одновременно осуществляются термотехнол., теплотехн. и мех. процессы, в к-рых участвуют исходные материалы, продукты, печная среда и футеровка. К мех. процессам относятся перемещение в рабочей камере исходных материалов, продуктов и печной среды, к-рые должны создавать в рабочей камере оптим. условия для осуществления термотехнол. процессов.

Термотехнол. процессы весьма разнообразны. К физ. процессам, в частности, относятся: 1) тепловая активация металлов и сплавов, к-рую проводят, напр., для их подготовки к послед. пластич. деформации (ковке, прокату, волочению и др.); 2) термич. обработка исходных материалов-способ изменения их структуры и Cв-в в заданном направлении путем их нагревания и охлаждения с определенным режимом изменения т-р во времени и по объему печи; напр., отпуск и нормализация стали заключаются в нагреве ее до т-р соотв. ниже нижней критической или выше (на 20-50 0C) верхней критической, выдерживании при этих т-рах и послед. охлаждении, что приводит к повышению пластичности и ударной вязкости стали; 3) плавление исходных материалов, осуществляемое для послед. придания металлам и сплавам заданных форм, получения сплавов и твердых р-ров заданного хим. состава и физ. Cв-в, термич. рафинирования расплавл. металлов, направл. кристаллизации и зонной плавки при выращивании монокристаллов и глубокой очистки металлов и т.д.; 4) испарение исходных материалов, осуществляемое, напр., для селективного разделения расплавов и при первичной переработке нефти; 5) термич. обезвоживание жидких отходов - эффективный способ снижения загрязнения окружающей среды, в результате к-рого получают твердый сухой остаток в виде порошка или гранул.

К хим. термотехнол. процессам относятся, в частности, крекинг, коксование, пиролиз, варка стекла, термохим. рафинирование (очистка от примесей) металлов, возгонка (перевод в-ва из твердого состояния в газообразное, напр. при получении желтого фосфора), термосинтез (получение при высоких т-рах CaC2, CS2 и др.), термич. разложение сложных хим. в-в (используется, напр., при получении кальцинир. соды, техн. углерода), высокотемпературная деструкция углеводородного сырья (напр., для получения из нефти низших олефинов и жидких продуктов пиролиза - бензола, толуола и др.), термич. обезвреживание отходов (распад их на нейтральные к окружающей среде в-ва), а также обжиг, сжигание, выплавка, хим.-термич. обработка металлов.

Обжиг - термич. обработка материалов с целью направл. изменения их физ. Cв-в и хим. состава. При этом исходный материал сначала нагревают до определенной т-ры, выдерживают при ней и затем охлаждают с заданной скоростью. Обжиг применяют для термич. подготовки руд и их концентратов к послед. переработке, для получения конечных хим. продуктов и изделий (ртути, сурьмы, извести, керамики, эмалей, красок и др.). Различают обжиг с получением порошка и обжиг со спеканием.

При обжиге могут протекать процессы дистилляции, пиролиза, диссоциации, синтеза новых соед. из исходных, спекания, кальцинации (напр., разложение NaHCO3) в сочетании с разл. хим. р-циями. По химизму протекающих процессов выделяют неск. видов обжига. Окислит. обжиг применяют для перевода сульфидов металлов в оксиды, иногда с получением окускованного материала (как, напр., при произ-ве меди, цинка, никеля). Окислительно-сулъфа-тизирующий обжиг применяют перед гидрометаллургич. переделом для перевода цветных металлов в р-римые в воде сульфаты, железа-в нерастворимые в воде оксиды. С помощью окислительно-возгоночного обжига из медеэлектро-литных шламов удаляют селен благодаря окислению его до SeO2, к-рый возгоняется. При окислительно-спекающем обжиге медеэлектролитные шламы спекают с содой для перевода селена в водорастворимые селенит и селенат натрия, а теллура-в р-римый в к-тах теллурат натрия. Окислит.-восстановит, обжиг отличается от окислительного введением в шихту нек-рого кол-ва угля, что приводит к образованию летучих низших оксидов и, т. обр., облегчает выделение в газообразном состоянии компонентов, высшие оксиды к-рых слаболетучи.

Восстановит. обжиг применяют для получения металлов или их низших оксидов из высших, напр. MnO из концентрата MnO2. С помощью восстановит. магнетизир. обжига слабомагн. железную руду переводят в искусств. магнетит. Восстановительно-металлизирующим обжигом получают губчатое железо и железные порошки, восстановительно-дистилляционным - сурьму. Восстановительно-сульфатизи-рующий обжиг служит для переработки бедных никель-кобальтовых руд, восстановительно-хлорирующий обжиг-для облегчения извлечения Ti, Nb и Cu из никелевых концентратов (обжиг производится в присут. газообразного хлора). Восстановительно-хлорирующий сегрегац. обжиг осуществляют в присут. твердого восстановителя с добавкой хлоридов Na и Ca и используют для подготовки труднообогатимых руд цветных металлов к флотации или магн. сепарации.

Хлорирующий обжиг применяют для перевода ценных компонентов руды в легкорастворимые или легколетучие хлориды (напр., при произ-ве титана и циркония). В результате декарбонизир. обжига удаляют карбонаты Ca, Mo, Ba (напр., при обжиге известняка, доломита, магнезита, фосфорита). Кальцинирующий обжиг применяют для удаления конституц. влаги и CO2 (при произ-ве соды, извести и т. д.). Дистилляц. обжиг-отгонка в парообразном состоянии из руды или ее концентратов ценных составляющих (напр., Sb, Hg, As), к-рые затем конденсируют.

Обжиг проводят для получения минер. вяжущих в-в (портландцемента, высокообжигового гипса и др.), искусств. пористых заполнителей (керамзита, вспученного перлита, аглопирита и др.). Иногда обжиг совмещают со спеканием руды или концентрата с активными добавками (сода, мел и т. д.) или компонентами шихты (обжиг с окускованием) для облегчения послед. обработки.

Сжигание-процесс горения исходных горючих материалов для получения новых продуктов или освобождения хим. энергии. В печах сжигают сероводород, серу, фосфор, ацетилен, уголь, мазут, пропан, бутан, прир. газ и др.

Выплавка металлов-процесс получения металлов из руд и шихт, основанный на полном их расплавлении и разделении расплава. Таким образом получают сталь, чугун, никель, кобальт, свинец, черновые медь и кадмий, олово, сурьму и др. (см. Металлургия).

Хим.-термич. обработка металлов-процесс диффузионного насыщения пов-сти металла разл. хим. в-вами при повыш. т-рах для придания металлам повыш. износостойкости, жаростойкости, коррозионной стойкости, уста-лостной прочности и др. св-в.

При хим. превращениях исходных материалов в печах наряду с целевыми продуктами образуются твердые, жидкие и газообразные отходы, нек-рые из к-рых экологически вредны. Эти отходы перерабатывают на новые полезные продукты или подвергают хим. либо термич. обезвреживанию в других печах. Термотехнол. процессы, приводящие к появлению экологически вредных реакц. газов, необходимо осуществлять так, чтобы эти газы не контактировали с дымовыми газами, получаемыми при сжигании топлива.

Конструкции печей. В зависимости от целей и характера термотехнол. процессов конструкции печей имеют свои особенности. В качестве примера на рис. 1 приведена схема герметизированной электрической ванной печи, предназначенной для получения желтого фосфора. Она имеет круглую форму и футерована углеграфитными блоками, а верх. часть стенки - шамотными кирпичами. Осн. конструктивный элемент этой печи-ванна 6. В ней осуществляются превращ. исходных материалов и получается желтый фосфор, к-рый возгоняется и выводится из печи. В боковых стенках ванны установлены летки 10 для выпуска шлака и феррофосфора. Ванна заключена в металлич. кожух 4, к-рый обеспечивает ее мех. прочность и герметичность. Ванна сверху закрывается сводом 8 из жаропрочного железобетона; на своде установлена электроизоляц. газонепроницаемая металлич. крышка 3. На своде и крышке имеются отверстия для прохода электродов 7, течек (отверстий) 2 для подачи исходных материалов и отводов газообразных продуктов. Передача электроэнергии электродам, удерживание, регулирование их положения в ванне осуществляется с помощью электрододержателей 1. Печь непрерывно охлаждается водой.

3538-1.jpg

Рис. 1. Электрич. руднотермич. печь для получения фосфора: 1 -электрододер-жатель; 2-течки; 3-крышка; 4-кожух ванны; 5-водоохлаждение ванны; 6-ванна; 7-электроды; 8-свод; 9 - трансформатор; 10-летка.

3538-2.jpg

Рис. 2. Вращающаяся печь: 1-откатная головка; 2-горелка; 3-барабан; 4-бандаж; 5-венцовая шестерня; 6-пыльная камера; 7-наклонная течка; 8-опорная станция; 9-опорно-упорная станция; 10-механизм привода.


На рис. 2 приведена схема вращающейся печи, в к-рой осуществляется обжиг сыпучих материалов (шамота, магнезита, доломита, керамзита, боксита, марганцевой, цинковой и др. руд, киновари и т.д.). Эта печь имеет цилиндрич. рабочую камеру - барабан 3, выполненный из огнеупорного кирпича и заключенный в стальной корпус, на к-ром установлены бандажы 4 и венцовая шестерня 5. Бандажами печь устанавливается на упорные и опорные ролики, к-рые смонтированы на металлич. рамах и находятся на бетонном фундаменте (опорно-упорная станция 9). Загрузка исходного м
атериала производится по наклонной течке 7, расположенной в пыльной камере 6, а разгрузка осуществляется через откатную головку 1, в к-рой установлена горелка (или форсунка) 2 для сжигания топлива. Перемещение исходного материала вдоль продольной оси печи осуществляется благодаря вращению корпуса, установленного под углом 2-4° к горизонту. Во вращение печь приводится спец. механизмом привода 10. В месте соединения корпуса печи с пыльной камерой и откатной головкой установлены уплотняющие устройства. В рабочей камере нек-рых печей имеются внутри-печные теплообменники для интенсификации обжига. В нашей стране эксплуатируются вращающиеся печи диаметром от 1 до 7 м и длиной от 12 до 230 м.

На рис. 3 приведена схема многоподовой печи, предназначенной для обжига сыпучих материалов (сульфидов металлов, магнезита, извести, золото- и серебросодержащих руд и т.д.). Она выполнена из огнеупорных и теплоизоляц. материалов; снаружи заключена в стальной кожух. Топливом в ней может служить мазут или прир. газ. Рабочая камера имеет форму вертикального цилиндра, разделенного горизонтально расположенными подами 1 на неск. кольцевых реакц. камер с разл. температурными режимами. На подах имеются отверстия 2, расположенные попеременно на периферии или в центре, для пропускания исходного материала и печных газов. Перемещение по подам с одноврем. перемешиванием обжигаемого материала осуществляется перегребающим устройством, состоящим из центрального пустотелого вала 6 и закрепленных в нем рукояток с гребками 5 (мех. мешалками). Центральный вал и рукоятки охлаждаются воздухом, подаваемым от вентилятора 7. Этот воздух затем м. б. использован для сжигания топлива. Перегребающее устройство приводится во вращение механизмом привода 8, состоящим из электромотора и спец. редуктора, расположенного под печью.

3538-3.jpg

Исходный материал загружают на верх. под через шнек 4 и гребками перемещают до отверстия на нем, через к-рое он подается вниз-на след. под, совершая сложный зигзагообразный путь по всем подам, и выгружается внизу печи. На нек-рых кольцевых камерах снаружи печи установлены горелки 10 для сжигания газообразного топлива (топливного газа), полученные дымовые газы в смеси с газами, к-рые выделяются при протекании термотехнол. процессов, являются теплоносителями, движутся по рабочим камерам вверх и выводятся из печи. Мазутное топливо сжигается в спец. отдельно стоящей топке 9, и образовавшиеся газы по футеров. трубе подаются в печь. Диаметр промышленных печей обычно 1,6-6,8 м, число подов 4-16, общая пов-сть подов составляет 6,5-370 м2.

3538-4.jpg

Доменная шахтная печь (рис. 4) предназначена для выплавки чугуна из железных руд. Главный термотехнол. процесс в ней восстановление оксидов железа. Осн. частями печи являются колошник 1, шахта 2, распар 3, заплечники 4, горн 5, лещадь (основание, или дно, горна) и железобетонный фундамент 22. Через спец. засыпной аппарат 6 в колошник загружают исходные шихтовые материалы и отводят образующиеся газы. Ниже колошника расположена шахта конич. формы, в к-рой материалы нагреваются, увеличиваются в объеме и опускаются вниз под действием собств. веса. Распар наиб. широкая цилиндрич. часть печи, соединяющая шахту с заплечниками. В заплечниках происходит выгорание кокса и образование жидких продуктов плавки, т.е. уменьшение объема находящихся в печи B-B. Ниж. часть печи-горн делится на две зоны: верхнюю-фурменную, в к-рой установлены фурмы 9 для вдувания горячего воздуха (дутья) и топлива (прир. газа, мазута и др.), и нижнюю металлоприемник, где накапливаются жидкий чугун и шлак и затем выпускаются через летки 10, 11 по желобам 21 в ковш. Изнутри печь футерована высококачеств. огнеупорными материалами и заключена в стальной кожух 16. Для предохранения от разрушения футеровка охлаждается металлич. холодильниками 17 и 18, по к-рым постоянно циркулирует вода. 0 oC

В нефтехим. и нефтеперерабатывающей пром-сти наиб. широко используются трубчатые печи. Они предназначены для огневого нагрева (до 300 0C), испарения и перегрева (при 300-500 oC) газообразных и жидких сред, а также для проведения высокотемпературных процессов деструкции углеводородного сырья (при т-ре ~ 900 0C). Соответственно различают нагревательные (применяемые, напр., для произ-ва масел), нагревательно-испарительные (для первичной переработки нефти) и нагревательно-испарительно-реак-ционные (применяемые для получения низших олефинов, бензола, толуола и др.) трубчатые печи.

Осн. элемент этих печей трубчатый змеевик, в к-ром движется нагреваемая среда (исходный материал). Змеевик изготовляют из жаропрочных труб диаметром 57-426 мм. длиной до 24 м и толщиной стенок 4-22 мм; пов-сть нагрева составляет 15-2000 м2.

Подавляющее большинство трубчатых печей имеют две камеры конвекционную (или конвективную) и радиационную (или радиантную), и называются радиационно-конвекцион-ными, или радиантно-конвективными. Обычно исходный материал поступает сначала в конвекц. камеру, где он нагревается вследствие конвекции, а затем в змеевик радиац. камеры, к-рый обогревается спец. горелками. Трубчатые печи могут быть разной формы-коробчатые, широко- и узкокамерные, цилиндрические, кольцевые, секционные, одно- и многокамерные. Змеевики в них бывают горизонтальные, вертикальные, винтовые и коллекторные. Конвекц. камеры размещаются относительно радиац. камеры сверху, снизу, сбоку или в середине. Трубчатые печи различаются также положением горелок для жидкого и газообразного топлива или устройств для сжигания твердого топлива (боковое, настенное, подовое, сводное и т.д.), отводом продуктов сгорания топлива (дымовых газов) из печей, числом радиац. и конвекц. камер, видом огнеупорной обмуровки и теплоизоляции (огнеупорный шамотный кирпич, блочный жаропрочный бетон, легковесные шамотноволокнистые плиты и т. д.).

Важнейшими показателями работы трубчатых печей кроме тепловой мощности, производительности по сырью и кпд являются теплонапряженность пов-сти нагрева, гидравлич. потери напора потоков сырья в трубчатом змеевике. Тепло-напряженность пов-сти нагрева характеризует, насколько эффективно используются трубчатые змеевики для нагрева сырья, и определяется кол-вом тепла, передаваемым через 1 м2 пов-сти змеевика за 1 ч. Гидравлич. потери напора в змеевике зависят от скорости движения сырья, вязкости, длины печных труб, их диаметра, чистоты внутр. пов-сти, сопротивлений в местах соединения труб. При деструктивной переработке нефтяного сырья жестко устанавливаются такие параметры, как т-ра, давление, время контакта (время пребывания сырья в змеевике). Производительность трубчатых печей в случае переработки нефти при атм. давлении достигает 8000 т/сут, кпд-92%; допускаемая теплонапряженность для нагревательных и нагревательно-испаритель-но-реакционных трубчатых печей составляет 17-58 и 80 кВт/м2 соотв.; тепловая мощность варьирует от 0,12 до 250 МВт. Трубчатые печи большой мощности обладают рядом преимуществ по сравнению с печами малой мощности: относительно небольшие капиталовложения, простота техн. обслуживания, лучшие техн.-экономич. показатели, компактность, низкая материалоемкость и т.д.

Усовершенствование конструкций трубчатых печей для деструктивной переработки нефтяного сырья в нефтехим. пром-сти имеет целью увеличение выхода продуктов при миним. расходе сырья и топливно-энергетич. ресурсов, повышение работоспособности и долговечности материального оформления, организацию автоматич. управления режимом работы. Один из путей - уменьшение длины и диаметра печных труб и изменение геометрии трубчатых змеевиков, что позволяет уменьшить время пребывания сырья в реакц. зоне, благодаря чему возрастает селективность процессов пиролиза и выход целевых продуктов.

В нефтеперерабатывающей и нефтехим. пром-сти используют трубчатые печи разл. конструкций. В качестве примера на рис. 5 приведена схема радиационно-конвекционной трубчатой печи нефтеперерабатывающей установки. Печь состоит из радиац. камеры 5, футерованной легковесным жаростойким бетоном, цельносварного трубчатого змеевика 6, подовой горелки 7 для жидкого или газообразного топлива. Верх. расположение конвекц. камеры 1 и дымовой трубы 8 обеспечивает прямоточное удаление продуктов сгорания топлива с миним. гидравлич. потерями напора в змеевике.

3538-5.jpg

3538-6.jpg

Узкокамерная нагревательно-реакц. трубчатая печь для произ-ва этилена из нефтяного сырья (рис. 6) состоит из двух самостоят. отсеков-радиационной (1) и конвекционной (2) камер, объединенных одной дымовой трубой 4. Топливная система оснащена настенными акустич. газовыми горелками 5, обогревающими стенки топки и равномерно излучающими тепло на пирозмееви-ки 3. Кол-во топливного газа (и, следовательно, т-ра пиролиза) регулируется спец. клапанами 7, что позволяет экономно расходовать топливо, сократить вредные выбросы в атмосферу, упростить техн. обслуживание, увеличить долговечность материальной части. Исходный материал поступает в конвекц. камеру, где нагревается до 500-550 0C, затем-в радиац. камеру, где происходит пиролиз при 800-850 0C, и выходит из печи в за-калочно-испарит. аппарат (ЗИА) 10, служащий для охлаждения газов пиролиза и выработки водяного пара.

Схема печного агрегата установки миллисекундного пиролиза углеводородного сырья для произ-ва низших олефинов приведена на рис. 7. Время контакта в зоне р-ции составляет 0,05-0,1 с, что позволяет вести процесс при 900-930 0C. Это обеспечивает достаточную селективность и высокий выход целевых продуктов. Исходное сырье поступает в конвекц. камеру 1 для подогрева, а затем-в радиац. камеру 2 через два автономных коллектора, расположенных в поду топки (на рис. не показаны). Эти коллекторы соединены с трубчатым змеевиком 3, представляющим собой ряд прямых вертикальных трубок, в к-рых происходит пиролиз. На выходе из агрегата оба потока объединяются и поступают в ЗИА. Обогрев в печи осуществляется подовыми горелками, пламя к-рых направлено на стены топки, излучающие равномерный тепловой поток на реакц. трубки.

Для хим. и физ.-хим. исследований и анализа, а также в препаративных целях широко используют лабораторные печи. Большинство из них представляют собой электрические печи сопротивления. Они снабжены регулирующими устройствами, позволяющими выдерживать образцы при разл. режимах изменения т-ры, и контрольно-измерит. приборами для наблюдения за ходом процессов.

3538-7.jpg

Лабораторные печи разнообразны по своим конструкциям; имеются, напр., печи с вращающимся барабаном, с кипящим слоем (КС; источником тепла в них м. б. топливо), печи с муфелем (т.е. с замкнутой камерой из шамота, керамики или др. огнеупорного материала, в к-рую помещают нагреваемое в-во). В зависимости от формы муфеля различают тигельные, трубчатые и шахтные печи. Т-ра в муфельной печи обычно составляет 1000-1200 0C, но может достигать и 1450 0C.

В качестве примера на рис. 8 приведена схема муфельной электропечи сопротивления для нагрева до 1000 0C. Ее прямоугольный корпус 7 выполнен из тонколистовой стали, в верх. части находится камера нагрева 6, в ниж. части-блок управления 5. В центре камеры нагрева размещен керамич. муфель 8, на к-рый намотан нагреват. элемент 9. Внутр. пов-сть муфеля образует рабочее пространство электропечи. Через отверстие 14 в задней части муфеля в рабочее пространство вводят регулирующую термопару. Пространство между муфелем и корпусом камеры нагрева заполнено теплоизоляцией 10. Загрузка электропечи производится через проем, закрываемый дверцей 12 с отверстием 13 для ввода контрольной термопары. Блок управления 5 электропечи служит для автоматич. поддержания заданной т-ры.

Лит.: Исламов M. Ш., Печи химической промышленности, 2 изд., Л., 1975; его же. Проектирование и эксплуатация промышленных печей, Л., 1986; Ентус H. Р., Шарихин В. В., Трубчатые печи в нефтеперерабатывающей и нефтехимической промышленности, M., 1987. M. UI. Исламов, H. P. Ентус.

___

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн