Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ПЕНОПОЛИОЛЕФИНЫ

ПЕНОПОЛИОЛЕФИНЫ, пенопласты, получаемые из полиэтилена, хлорир. полиэтилена, полипропилена, сополимеров a-олефинов, напр., с винилацетатом, малеиновым ангидридом, акрилатами. M. б. жесткими, полужесткими и эластичными, с закрытыми и открытыми ячейками.

Свыше половины пром. пенополиолефинов имеют матрицу из химически или радиационно сшитого полиолефина. Хим. сшивание осуществляют обычно орг. пероксидами и гидропероксида-ми, силанольными соед. (в комбинации с водой), олигоэфир-акрилатами, азидами арилсульфокислот, м-фениден-бис-малеинимидом, трис-(акрилоилгидроксиэтил)фосфатом. Порообразователями служат газы (CO2, N2 и др.), чаще-хладоны, способствующие также ускоренному охлаждению пенополиолефинов. Твердые орг. порофоры (напр., азодикарбонамид) применяют преим. в форме композиций или гранулир. смесей с термопластом ("концентратов"), иногда в сочетании с ZnO, CdO, стеаратом Pb или др. активаторами разложения поро-фора. Технол. св-ва вспениваемой композиции и качество получаемого из нее пенополиолефина регулируют добавлением дисперга-тора (полиэтиленоксид, минер. масло, диоктил- или дибу-тилфталат), зародышеобразователя (парафины, CaCO3, жидкий полиизобутилен, TiO2, алюминиевая пудра), термостабилизатора, антипирена, красителя (пигмента), наполнителя [напр., силикагель , Al(OH)3, слюда, стекловолокно].

Получение. Листы, пленки, волокна (жгуты), кабельную изоляцию и др. изделия из пенополиолефинов с кажущейся плотн. выше 0,3 г/см3 формуют из приготовл. смеси на двухчервячных и др. стандартных экструдерах, изделия из более легких пенополиолефинов-на одно-, двухшнековых или каскадного типа экструдерах. Легкие пенополиолефины получают в 2 стадии: предварит, экструдирова-нием заготовки с послед. вспениванием и фиксацией пены путем сшивания полиолефина в нагреват. камере. Сшивание низкокристаллич. полиолефинов (до содержания нераство-римой в кипящем ксилоле гель-фракции преим. 30-40%) м. б. осуществлено одновременно с вспениванием, но чаще оно предшествует вспениванию. При изготовлении тонких изделий сшивание проводят гл. обр. с помощью радиоактивного излучения. Выделяющийся при радиац. сшивании H2 иногда используют как дополнит. или осн. порообразова-тель.

Растущее пром. значение приобретают технологии, при к-рых вначале в автоклаве получают полиолефиновые гранулы (преим. сферические), пропитанные легкокилящим по-рообразователем. Затем гранулы вспенивают в один или неск. приемов на выходе из автоклава и(или) в форме в результате снижения давления и(или) повышения т-ры (так же, как получают "бисерный" пенополистирол).

Пленки и трубки (прутки) из пенополиолефинов с открытыми порами получают, осаждая из р-ра полиолефина пористую массу вследствие выпаривания р-рителя ("сухой" способ) либо добавления в р-р коагулянта. Изделия небольшой толщины из открытопористых пенополиолефинов изготовляют, формуя прессованием заготовку из полиолефина, содержащего до 100% по массе тонкодисперсного наполнителя (напр., NaCl, NaHCO3, крахмал с размером частиц 0,1-800 мкм), впоследствии экстрагируемого, или спекая частицы порошкообразного полиолефина в среде глицерина, вакууме или атмосфере инертного газа. Иногда такие пенополиолефины модифицируют добавлением в них или в исходную композицию активир. угля, гидрофобизи-рующего или гидрофильного агента.

Большинство пенополиолефинов легко перерабатывается вакуум-, пневмо-и термоформованием и м. б. приварено к мн. облицовочным материалам. Для дублирования пенополиолефинов с тканями, пленками, пластмассами применяют преим. резиновые клеи.

Свойства. Кажущаяся плотность пенополиолефинов обычно не превышает 0,1 г/см3. Ползучесть и остаточная деформация пенополиолефинов при сжатии и растяжении зависят от степени кристалличности полимера-основы и уменьшаются с увеличением степени его сшивания. Пенополипропилен подвержен ползучести меньше, чем пенополиэтилен.

Эластичность пенополиолефинов, проявляющаяся тем заметнее, чем ниже их кажущаяся плотность, выше у пенополиолефинов на основе аморфных а низкокристаллич. полиолефинов. Высоковспененный пенополиэтилен (кажущаяся плотн. 0,01 -0,05 г/см3) занимает по жесткости промежут. положение между эластичными пено-полиуретанами и жестким пенополистиролом. Формоустой-чивость, тепло- и хим. стойкость улучшаются с повышением степени сшивания.

Теплопроводность пенополиолефинов на основе сшитых полипропилена и полиэтилена (кажущаяся плотн. ок. 0,035 г/см3) cocтявляет соотв. 0,03-0,035 и ок. 0,038 Вт/(м·К); у несшитых аналогов она неск. больше. Пенополиолефины из сшитого полиэтилена можно эксплуатировать при т-рах от — 100 0C (гибкость утрачивается при -70 0C) до 80 0C (кратковременно-до 100 0C), а пенополи-провилен-до 120-150 0C. В пламени пенополиолефины горят (пенонолиэти-лен несколько быстрее, чем пенополипропилен).

Пенополиолефины нестойки в конц. к-тах, а при т-рах выше 50 0C-также и в углеводородах. Устойчивость пенополиолефинов к галогеналканам и ароматич. углеводородам, спиртам, кетонам возрастает с увеличением степени кристалличности и при сшивании полимера-основы. Пенополиолефины-гидрофобные материалы, отличающиеся высокой влаго- и водостойкостью.

Применение. Пенополиолефины используют для электроизоляции проводов и кабелей, теплоизоляции емкостей для хранения хими-калиев, как вибродемпфирующие прокладки и упаковочный материал, фильтры для тонкой очистки сточных вод, нефтепродуктов, биол. r-ров, масел, в произ-ве электротсхн. бумаги, ортопедич. обуви, корсетов и др.

Пром. произ-во пенополиолефинов на основе полиэтилена высокого давления, полипропилена и сшитого полиэтилена освоено впервые соотв. в 1941 (США), 1964 и 1967 (Япония).

Лит. см. при статьях Пенопласты. Политропилен. Полиэтилен.

Ю.С. Мурашов.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн