Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


АКУСТИЧЕСКАЯ СПЕКТРОСКОПИЯ

АКУСТИЧЕСКАЯ СПЕКТРОСКОПИЯ, изучает распространение в в-ве звуковых волн малых амплитуд. В случае продольных волн частицы или малые элементы объема, содержащие не менее 104 молекул, колеблются вдоль направления распространения волны, в случае поперечных-в плоскости, перпендикулярной этому направлению. Продольные волны создают последовательно чередующиеся адиабатич. сжатия и разрежения среды, сопровождающиеся изменением т-ры и соответствующим смещением равновесия хим. р-ций. В областях сжатия и разрежения возникают небольшие локальные отклонения от термодинамич. равновесия, не приводящие (в случае звуковых колебаний малых амплитуд) к фазовым переходам. Среда стремится вернуться в состояние термодинамич. равновесия, т.е. возникают релаксац. процессы, к-рые приводят к поглощению энергии волн. Убывание амплитуды (избыточного давления1014-17.jpgР) плоской волны, распространяющейся вдоль направления х. описывается ур-нием:1014-18.jpgР(х) =1014-19.jpg , где1014-20.jpgР0-начальная амплитуда,1014-21.jpg-коэф. поглощения, зависящий от частоты v (v = 1/21014-22.jpgТ, где T-период волны).
1014-23.jpg

Рис. 1. Дисперсия скорости звука.

При релаксации фазовая скорость С волны также зависит от v, т.е. наблюдается дисперсия скорости звука. Если Т намного меньше времени релаксации1014-24.jpg звуковые колебания не успевают изменить состояние среды, и при v1014-25.jpgС->1014-26.jpg(см. рис. 1). При1014-27.jpg (низкие частоты) термодинамич. равновесие среды в осн. успевает установиться и скорость звука будет меньше (v—>0, С—>С0). Наиб. изменение С наблюдается в т. наз. дисперсионной области при частоте релаксации vp = l/21014-28.jpg

В методах акустической спектроскопии измеряют зависимости С и1014-29.jpgот v (или1014-30.jpg ) с помощью акустич. спектрометров, обычно содержащих излучатель и приемник звуковых колебаний. Распространены приборы, позволяющие измерять С и1014-31.jpg в жидкой среде в интервале v 104-109 Гц. Требующийся для измерений объем в-ва составляет (10C/v)3. относит. погрешность измерений С-10-1 - 10-3%,1014-32.jpg-5-10%.

При проведении исследований сначала находят эксперим. зависимости С и1014-33.jpgот v. Затем, исходя из той или иной модели релаксац. процесса, рассчитывают теоретич. зависимости и сравнивают их с экспериментальными. Наиб. часто релаксац. процесс описывают с помощью представлений об элементарных хим. р-циях. В терминах элементарных р-ций могут быть описаны любые резкие изменения состояния системы, приводящие к разрыву или образованию хим. связей, конформац. превращениям, поглощению или испусканию фононов или фотонов и т.д. В Наиб. простых случаях зависимости1014-34.jpgи С от со описываются ур-ниями:
1014-35.jpg

Здесь1014-36.jpg-время акустич. релаксации, обусловленное некрой р-цией, bа-релаксац. сила, соответствующая этой р-ции,1014-37.jpg - "релаксирующая" часть коэффициента поглощения,1014-38.jpg-длина волны, соответствующая круговой частоте1014-39.jpg

В кач-ве примера на рис. 2 представлена простая релаксац. полоса поглощения звука в акустич. спектре жидкого бензола. Ее максимум соответствует релаксац. частоте vp = = 1/21014-40.jpgPS; ордината максимума равна1014-41.jpgbа/2; полуширина полосы v1/2 =1014-42.jpg
1014-43.jpg

Рис. 2. Зависимость величины1014-44.jpg1014-45.jpg от частоты звуковых колебаний в жидком бензоле при 20°С.

Если какая-либо из протекающих в среде р-ций сопровождается поглощением теплоты и (или) изменением объема системы, то bа > 0. Такие р-ции проявляются в акустич. спектре, по к-рому можно сделать выводы об их механизме. Время1014-46.jpgсвязано с константами скорости р-ций и концентрациями реагентов, оно зависит от кинетики и механизма этих р-ций. В более общем случае в спектре наблюдается неск. релаксац. полос поглощения (на графиках зависимости С от v - неск. релаксац. ступенек). Время релаксации Vj характеризует положение i-той полосы поглощения на графиках1014-47.jpg=f(v). Если соседние1014-48.jpgразличаются менее чем в 5 раз, то соответствующие им простые области дисперсии расшифровать трудно.

Большое значение имеют звуковые волны, возникающие в результате теплового движения в объеме и на пов-сти раздела фаз. Их можно изучать оптич. методами (по спектрам рэлеевского рассеяния света). Поверхностные звуковые волны влияют на механизм гетерог. р-ций.

Методами акустической спектроскопии исследуют св-ва и строение в-ва, кинетику быстрых р-ций, конформац. превращения, возбуждение и дезактивацию внутримол. колебаний в газах и жидкостях (в т.ч. в биологически активных средах). В твердых кристаллах исследуют образование и исчезновение дефектов.


===
Исп. литература для статьи «АКУСТИЧЕСКАЯ СПЕКТРОСКОПИЯ»: Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Физическая акустика, пер. с англ., т. 1-7, М., 1966-74; Методы исследования быстрых реакций, пер. с англ., М., 1977; Шах паройов М.И., Механизмы быстрых процессов в жидкостях, М., 1980; Поверхностные акустические волны, под ред. А. Олинера, пер. с англ., М., 1981. М. И. Шахпаронов.

Страница «АКУСТИЧЕСКАЯ СПЕКТРОСКОПИЯ» подготовлена по материалам химической энциклопедии.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн