Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


Следующая Содержание Предыдущая

Трансаминирование и дезаминирование

В ходе деградации белков накапливается аминный азот, который в отличие от углерода не пригоден для получения энергии за счет окисления. Поэтому те аминогруппы, которые не могут быть повторно использованы для биосинтеза, превращаются в мочевину (см. с. 184) и выводятся из организма.

Трансаминирование и деземинирование; Механизм трансаминирования; Метаболизм аммиака (NH3) в печени;

А. Трансаминирование и дезаминирование

Из реакции переноса NH2 наиболее важны реакции трансаминирования (1). Они катализируются трансаминазами и участвуют в катаболических и анаболических процессах с участием аминокислот. При трансаминировании аминогруппа аминокислоты (аминокислота 1) переносится на 2-кетокислоту (кетокислота 2). Из аминокислоты при этом образуется 2-кетокислота (а), а из первоначальной кетокислотыаминокислота (b). Переносимая NH2-группа временно присоединяется к связанному с ферментом пиридоксальфосфату (PLP, см. с. 110), который вследствие этого переходит в пиридоксаминофосфат (схема Б).

Если NH2-группа освобождается в виде аммиака, то говорят о дезаминировании (2). Эта реакция протекает по различным механизмам. Отщепление NH3 от амидной группы называют гидролитическим дезаминированием (схема В, фермент [3]). Иногда отщепление NH3 (см. с. 20) сопровождается образованием двойной связи (элиминирующее дезаминирование, не показано). Особенно важно окислительное дезаминирование (2). В такой реакции аминогруппа вначале окисляется до иминогруппы (), при этом восстановительные эквиваленты переносятся на НАД+ или НАДФ+. На второй стадии происходит гидролитическое отщепление иминогруппы. В качестве конечного продукта, как и при трансаминировании, образуется 2-кетокислота (схема В).

Б. Механизм трансаминирования

В отсутствие субстратов альдегидная группа пиридоксальфосфата ковалентно связана с остатком лизина трансаминазы (1). Этот тип соединения, найденный также в родопсинах (см. с. 346), относится к альдиминам или шиффовым основаниям, во время реакции аминокислота 1 (схема А, 1 а) вытесняет остаток лизина и образуется новый альдимин (2). Затем за счет изомеризации происходит перемещение двойной связи. Полученный кетимин (3) гидролизуется до 2-кетокислоты и пиридоксаминфосфата (4). На второй части реакции (схема А, 1б) те же стадии протекают в противоположном направлении: пиридоксаминфосфат и вторая 2-кетокислота образуют кетимин, который иэомеризуется в альдимин. Наконец, отщепляется вторая аминокислота и регенерируется кофермент.

В. Метаболизм NH3 в печени

Образование предшественников NH3 и аспартата, как и синтез мочевины (см. с. 184), происходит преимущественно в печени. Накапливающийся в тканях аминный азот переносится кровью в печень в форме глутамина (Gln) и аланина (Ala, см. с. 330). В печени Gln дезаминируется глутаминазой [3] с образованием глутамата (Glu) и NH3. Аминогруппа аланина переносится аланинтрансаминазой [1] на 2-оксоглутарат (2-OG). При этом трансаминировании (схема А) также образуется глутамат. Наконец, из глутамата путем окислительного дезаминирования (схема А) высвобождается NH3. Эта реакция катализируется глутаматдегидрогеназой [4], типичным для печени ферментом. Аспартат (Asp), второй донор аминогруппы в цикле мочевины, также образуется из глутамата. Аспартаттрансаминаза [2], ответственная за эту реакцию, подобно аланинтрансаминазе [1], присутствует в печени.

Трансаминазы присутствуют также в других тканях, из которых при повреждении клеток они переходят в кровь. Определение активности фермента в сыворотке (ферментная серодиагностика) является важным методом для обнаружения и клинического контроля таких нарушений. Определение активности трансаминаз в крови важно для диагноза заболеваний печени (например, гепатита) и сердца (инфаркт миокарда).

Следующая Содержание Предыдущая

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн