Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


АНИОННАЯ ПОЛИМЕРИЗАЦИЯ

АНИОННАЯ ПОЛИМЕРИЗАЦИЯ, ионная полимеризация, при к-рой концевое звено растущей цепи несет полный или частичный отрицат. заряд. Традиционно к анионной полимеризации относят процессы, инициируемые соед. щелочных или щел.-зем. металлов (либо своб. анионами). Процессы, развивающиеся с участием переходных металлов, относят обычно, независимо от характера поляризации связи металл-углерод, к координационно-ионной полимеризации.

К анионной полимеризации способно большинство известных мономеров, напр. ненасыщенные соед., содержащие в ос-положений электроноакцепторные группы (—СН=СН2, —С6Н5, —COOR, —CN, —NO2 и др.), карбонильные соед.,1031-36.jpgоксиды, тиооксиды, лактоны, лактамы, силоксаны и др. гетероциклич. соединения. Инициируется анионная полимеризация сильными основаниями, донорами электронов, электрич. током и ионизирующими излучениями. Соед. щелочных и щел.-зем. металлов (напр., орг. производные, алкоголяты, амиды) и др. в-ва основного характера инициируют анионную полимеризацию по типу кислотно-основного взаимод. (присоединение к мономеру М инициатора АВ или его фрагмента А-):

1031-37.jpg

Своб. металлы, их ион-радикальные соли (напр., нафталинид Na) и др. сильные доноры электронов действуют по типу окисления-восстановления (перенос электрона к мономеру; Me-металл):

1031-38.jpg

Процессы типа (1) характерны также для электрохим. и радиационно-хим. инициирования. В инициировании по типу (1) участвуют промежут. ион-радикальные частицы (М-), рекомбинация к-рых приводит к образованию молекул с активными центрами на обоих концах:1031-39.jpg В принципе, при таком механизме возможно параллельное развитие анионных и радикальных р-ций, однако в реально изученных системах случаи с заметным участием последних не обнаружены.

Активные центры анионной полимеризации в подавляющем большинстве случаев инициирования щелочными, щел.-зем. металлами или их соединениями представляют собой производные этих металлов. В зависимости от природы концевого мономерного звена (Р), противоиона (Me+) и р-рителя (S)активные центры могут существовать в виде различающихся по реакц. способности и стереоспецифичности ковалентных поляризованных молекул (ф-ла II), их ассоциатов (I), ионных пар разной степени сольватации (III, IV), своб. анионов Р (V):
1031-40.jpg

Как правило, противоион входит в состав активного центра и тем самым оказывает непосредств. воздействие на акты роста цепи (исключение - полимеризация на своб. анионах). В предельном случае присоединению мономера к растущей цепи может предшествовать образование координац. комплекса с противоионом (координационноионный механизм). Это создает большие возможности направленного воздействия на полимеризацию и св-ва образующихся полимеров, чем в случае процессов с участием "своб." частиц (своб. радикалов, анионов и катионов).

Для анионной полимеризации характерна, как правило, относит. стабильность активных центров. В ряде случаев, напр. при анионной полимеризации неполярных мономеров в углеводородных р-рителях, суммарный процесс включает практически лишь стадии инициирования и роста цепи (р-ции обрыва и передачи цепи отсутствуют или идут с очень малыми скоростями). При этом образуются т. наз. живущие полимеры, концевые группы к-рых сохраняют способность к присоединению мономера или др. реагентов и после завершения полимеризации. Такие полимеры - удобный объект как для исследования механизма анионной полимеризации, так и для решения разл. синтетич. задач: получения полимеров с заданным ММР, в т.ч. практически монодисперсных; синтеза полимеров и олигомеров с концевыми функц. группами, способными к дальнейшим превращ. поликонденсац. или полимеризац. типа, а также блоксополимеров, привитых сополимеров и разл. полимеров с регулируемым типом разветвления и др.

Анионная полимеризация мономеров с полярными функц. группами - более сложный процесс, сопровождающийся дезактивацией активных центров при взаимод. с функц. группами мономера и полимера. Энергия активации побочных р-ций (как и передачи цепи на р-ритель в случае в-в с подвижным атомом Н, напр. толуола), как правило, выше, чем энергия активации роста цепи; поэтому понижение т-ры полимеризации способствует обычно подавлению побочных р-ций.

Скорость анионной полимеризации, особенно при умеренных т-рах, в большинстве случаев значительно выше скорости радикальной полимеризации. Это обычно связано с более высокой действующей концентрацией активных частиц (в пределе она м.б. равна исходной концентрации инициатора). Собственная же реакц. способность разл. форм активных центров варьирует в очень широких пределах даже для одного и того же мономера. Напр., для анионной полимеризации стирола при 30 °С порядок величины абс. константы скорости роста цепи (в л/моль*с) при переходе вдоль равновесий (2) изменяется от 10-1 (литиевые ассоциаты, II) до 105 (своб. анионы, V).

Общая кинетич. картина анионной полимеризации существенно осложнена упомянутой выше множественностью форм существования активных центров. Помимо указанных в ур-ниях (2), в ряде процессов играют роль и более сложные образования, напр. ионные тройники типа Р -, Me+, Р- . Поэтому даже в случае живущих полимеров при быстрой стадии инициирования, когда суммарная концентрация растущих цепей равна исходной концентрации инициатора (с0), общая скорость р-ции роста цепи (Vp)далеко не всегда описывается простым ур-нием: Vp = kpc0 [Ml, где kp - константа скорости р-ции. Часто наблюдаются более сложные зависимости общего вида:
1031-41.jpg

i* и kрi|-концентрация и константа скорости роста i-того активного центра), учитывающие вклад разл. форм активных центров; при этом суммарный порядок р-ции по инициатору варьирует от 1 до 0, а порядок по мономеру равен в большинстве случаев 1. Наиб. важные частные случаи ур-ния (3):
1031-42.jpg

(рост на мономерной форме активных центров при концентрац. преобладании малоактивных n-мерных ассоциатов; Касс-константа ассоциации) и
1031-43.jpg

(одноврем. рост на своб. ионах и ионных парах при концентрац. преобладании последних; Kдисс - константа диссоциации активных центров на ионы).

Для строгой интерпретации кинетич. данных и расчета абс. значений элементарных констант необходимо независимое определение Касс, Kдисc и констант др. равновесий типа (2). В ряде случаев это можно осуществить с помощью спектральных, кондуктометрич. и др. измерений, однако в целом анионная полимеризация количественно значительно менее изучена, чем, напр., радикальная полимеризация.

Участие противоиона в актах роста цепи обусловливает большие возможности воздействия на микроструктуру полимера, вплоть до образования в нек-рых случаях стереорегулярных и оптически активных полимеров. В наиб. степени ориентирующее влияние противоиона проявляется в углеводородной среде, где в присут. Li, наиб. стереоспецифичного из щелочных металлов, образуются 1,4-полидиены (с преобладанием цис-структуры в случае изопрена или с равным содержанием цис- и транс-структур в случае бутадиена) и изотактич. полиметилметакрилат. Среди щел.-зем. металлов образованию цис-1,4-полидиенов и изотактич. полиметилметакрилата в наиб. степени способствует Ва. Электронодонорные соед., насыщающие координац. сферу противоиона, благоприятствуют 1,2(3,4)-присоединению диенов и образованию синдиотактич. полиметилметакрилата.

В пром-сти анионную полимеризацию применяют гл. обр. для синтеза эластомерных материалов (непрерывной полимеризацией в р-ре, преим. на литиевых инициаторах)- 1,4- и 1,2-полибутадиена, статистич. сополимера бутадиена со стиролом, бутадиенстирольного термоэластопласта; объем произ-ва этих полимеров составляет ок. 1 млн. т/год. Методами анионной полимеризации синтезируют также олигомеры бутадиена с концевыми функц. группами, поли1031-44.jpgкапроамид, полиэтиленоксид, полиформальдегид, полисилоксаны и др. Осн. достоинства анионной полимеризации-легкость управления, возможность получения почти всех перечисленных гомо- и сополимеров бутадиена на одном и том же оборудовании при миним. изменениях технол. процесса, наличие долгоживущих активных центров, высокая чистота получаемых продуктов.

Систематич. изучение анионной полимеризации ненасыщенных соед. началось в 20-х гг. 20 в. (С. В. Лебедев, К. Циглер). Работы по теории анионной полимеризации и ее практич. реализации особенно интенсивно стали развиваться с сер. 50-х гг., когда была открыта способность Li вызывать образование цис-1,4-полиизопрена, близкого по структуре и св-вам к НК, и были в полной мере осознаны синтетич. возможности живущих полимеров.


===
Исп. литература для статьи «АНИОННАЯ ПОЛИМЕРИЗАЦИЯ»: Шварц М., Анионная полимеризация, пер. с англ., М., 1971; Ерусалимский Б. Л., Любе цк и и С. Г., Процессы ионной полимеризации, Л., 1974; Арест-Якубович А. А., "Успехи химии", 1981, т. 50, в. 6, с. 1141-67. А. А. Арест-Якубович.

Страница «АНИОННАЯ ПОЛИМЕРИЗАЦИЯ» подготовлена по материалам химической энциклопедии.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн