Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ЦЕЗИЙ

ЦЕЗИЙ [от лат. caesius - голубой (по ярко-синим спектр. линиям); лат. Cesium] Cs, хим. элемент I гр. периодич. системы, ат. н. 55, ат. м. 132,9054; относится к щелочным металлам. Природный цезий состоит из стабильного нуклида 133Cs. Поперечное сечение захвата тепловых нейтронов 2,9 х 10-27 м2. Конфигурация внеш. электронной оболочки атома 6s1; степень окисления +1; энергия ионизации при переходе Cs°6014-11.jpg Cs+6014-12.jpgCs2+ соотв. 3,89397, 25,1 эВ; сродство к электрону 0,47 эВ; электроотрицательность по Полингу 0,7; работа выхода электрона 1,81 эВ; металлич. радиус 0,266 нм, кова-лентный радиус 0,235 нм, ионный радиус Cs+ 0,181 нм (координац. число 6), 0,188 нм (8), 0,192 нм (9), 0,195 нм (10), 0,202 нм (12).
Содержание цезия в земной коре 3,7 x 10-4% по массе. Минералы цезия- поллуцит (Cs, Na)[AlSi2O6] x nН2О (содержание Cs2O 29,8-36,7% по массе) и редкий авогадрит (К, Cs)[BF4]. Цезий присутствует в виде примеси в богатых калием алюмосиликатах: лепидолите (0,1-0,5% Cs2O), флогопите (0,2-1,5%) и др., также в карналлите (0,0003-0,002% CsCl), трифилине, в термальных (до 5 мг/л Cs) и озерных (до 0,3 мг/л Cs) водах. Пром. источники цезия- поллуцит и лепидолит. Осн. месторождения поллуцита находятся в Канаде, Намибии, Зимбабве. Перспективные сырьевые источники: нефелиновые руды, карналлит, цезиевый биотит, флогопит и др. слюды и слюдяные хвосты, получаемые при разработке берилловых, фенакитовых, флюоритовых месторождений, а также высокоминерализованные термальные воды.

Свойства. Цезий- мягкий серебристо-белый металл, при комнатной т-ре находится в полужидком состоянии. Пары окрашены в зеленовато-синий цвет. Кристаллизуется в кубич. объемноцентрированной решетке: а = 0,6141 нм, z = 2, пространств. группа Im3m; т. пл. 28,44 °С, т. кип. 669,2 °С; плотн. 1,904 г/см3 (20 °С);6014-13.jpg 32,21 Дж/(моль x К);6014-14.jpg 2,096 кДж/моль,6014-15.jpg 65,62 кДж/моль,6014-16.jpg 76,54 кДж/моль (298,15 К);6014-17.jpg 85,23 Дж/(моль x К); ур-ния температурной зависимости давления пара: lgp (мм рт. ст.) = -4122/T+ 5,228 - 1,514 lgT + 3977T (100-301,59 К), lgp (мм рт. ст.)= -3822/T + 4,940 - 0,746 lgТ (301,59-897 К); теплопроводность, Вт/(м x К): 19,0 (298 К), 19,3 (373 К), 20,2 (473 К);6014-18.jpg мкОм x м: 0,1830 (273,15 К), 0,2142 (301,59 К, твердый), 0,3568 (301,59 К, жидкость), температурный коэф.6014-19.jpg 6,0 x 10-3 К-1 (273-291 К); парамагнетик, уд. магн. восприимчивость +0,22 x 10-9 (293 К);6014-20.jpg мПа x с: 6,76 (301,59 К), 5,27 (350 К), 3,18 (500 К);6014-21.jpg 60,6 мН/м (301,59 К); температурный коэф. линейного расширения 97 x 10-6 К-1 (273 К); твердость по Моосу 0,2; модуль упругости 1,7 ГПа (293 К); коэф. сжимаемости 71 x 10-11Па-1 (323 К).
По чувствительности к свету цезий превосходит все др. элементы. Катод из цезия испускает поток электронов даже под действием ИК излучения с длиной волны 0,80 мкм, макс. электронная эмиссия наблюдается у цезия при освещении зеленым светом (у др. элементов - при действии фиолетовых или УФ лучей).
Цезий химически очень активен. Стандартный электродный потенциал -2,923 В. На воздухе мгновенно окисляется с воспламенением, образуя надпероксид CsO2 с примесью пероксида Cs2O2. При ограниченном доступе О2 окисляется до цезия оксида Cs2O; CsO2 переходит в озонид CsO3 в токе озонированного О2 при 40 °С. С водой цезий реагирует со взрывом с образованием гидроксида CsOH и выделением Н2. Взаимод. с сухим Н2 при 200-350 °С под давлением 5-10 МПа или в присут. катализатора с образованием гидрида CsH. Горит в атмосфере галогенов, давая цезия галогениды. Сульфиды Cs2Sn (n = 1-6) получают взаимод. металла с S в жидком NH3. Селенид Cs2Se и теллурид Cs2Te синтезируют сплавлением цезия соотв. с Se и Те в вакууме. С N2 в обычных условиях цезий не взаимод., с жидким N2 при электрич. разряде между электродами, изготовленными из цезия, образует нитрид Cs3N. Цезий раств. в жидком NH3, алкиламинах и полиэфирах, образуя синие р-ры, обладающие электронной проводимостью; в аммиачном р-ре цезий медленно реагирует с NH3 c выделением Н2 и образованием амида CsNH2. С газообразным NH3 при 120 °С образует CsNH2, с красным Р в вакууме при 400-430 °С - фосфид Cs2P5, с порошком графита при 200-500 °С- карбид C8Cs, а при более высоких т-рах - C24Cs, C36Cs и др. карбиды, с ацетиленом при 300 °С в вакууме - ацетиленид Cs2С2, с Si и Ge в атмосфере Аr при 600 °С - соотв. силицид CsSi и германид CsGe. Цезий взаимод. с СО2, ССl4 со взрывом. Выше 300 °С разрушает стекло, восстанавливая Si из SiO2 и силикатов. Цезий реагирует со всеми к-тами с образованием соответствующих солей, со спиртами дает алкоголяты. Св-ва соед. цезия представлены в табл.

ХАРАКТЕРИСТИКА НЕКОТОРЫХ СОЕДИНЕНИЙ ЦЕЗИЯ

Показатель
CsH
СsO3
CsOH
Cs2SO4
CsNO3
Cs2CO3
CsN3
Цвет
Бесцв.
Оранжево-красный
Бесцв.
Бесцв.
Бесцв.
Бесцв.
Желтоватый
Сингония
Кубич.
Тетрагон.
Ромбич.
Кубич.
Ромбич.

6014-22.jpg

Гексагон.

6014-23.jpg

Гексагон.
Тетрагон.
Кубич.
Т. пл., °С
528
82а
224е
343
647б
1015
154е
793
151*
326
Плота. (25 oС), г/см3
3,42
3,19
3,675 (11 °С)
4,246 (20 °С)
3,643 (20 °С)
_
_
6014-24.jpg Дж/(моль x К)
40,6
83,7
73
134,9
96,1
123,9
83 ,23
6014-25.jpg кДж/моль
-54,0
-271,1
-416,6
7,1'
-1442,9
-505,0
-1134,9
-19,6
3,22в
6014-26.jpg кДж/моль
15
7,3
35,1
31
6014-27.jpg Дж/(моль К)
73
134
102,6
211,9
153,8
204,5
134,4
Р-римость в воде, г в 100 г
Разлагается с вьщеле-нием Н2
Разлагается с выделением О2
385,6 (15 °С) 303 (30 °С)
178,7 (20 °С) 210,3 (80 °С)
23,0 (20 °С) 134 (80 °С)
308,3 (20 °С)
224,2 (0 оС) 307,4 (16 °С)

а Т-ра разложения. бТ-ра полиморфного перехода. в6014-28.jpg полиморфного перехода.

Цезий образует твердые р-ры с К и Rb, эвтектич. смесь с Na, не смешивается с Li. Со мн. металлами дает интерметаллиды, напр. CsAu, CsSn4.
Получение. Для извлечения цезия из поллуцита используют след. методы: кислотные, спекание и сплавление, прямое получение металлич. цезия. В кислотных методах применяют галогеноводородные к-ты (чаще соляную) или H2SO4. Поллуцит разлагают конц. соляной к-той при натр., из полученного р-ра действием SbCl3 осаждают Cs3[Sb2Cl9], к-рый обрабатывают горячей водой или р-ром NH3 с образованием CsCl. При разложении поллуцита серной к-той получают алюмоцезиевые квасцы CsAl(SO4)2 x 12H2O.
Из методов спекания и сплавления наиб. распространен метод Аренда: поллуцит спекают со смесью СаО и СаС12, спек выщелачивают в автоклаве горячей водой, р-р упаривают досуха с H2SO4 для отделения CaSO4, остаток обрабатывают горячей водой; из полученного р-ра осаждают Cs3[Sb2Cl9]. Прямое извлечение металлич. цезия осуществляют путем нагревания до 900 °С в вакууме смеси (1:3) измельченного поллуцита и Са (или Аl).
Цезий из лепидолита получают попутно при его переработке на соед. лития. Цезий осаждают из маточных р-ров после выделения Li2CO3 или LiOH в виде смеси алюмоцезиевых, алюморубидиевых и алюмокалиевых квасцов.
Для разделения Cs, Rb и К и получения чистых соед. цезия применяют методы фракционированной кристаллизации квасцов и нитратов, осаждения и перекристаллизации Cs3[Sb2Cl9], Cs2[SnCl6]. Используют также ионообменную хроматографию на синтетич. смолах и неорг. ионитах (клиноптилолит и др.), экстракцию производными фенола [4-втор-бутил-2-(6014-29.jpgметилбензил)фенол, алкилфенолы С79 и др.]. Для получения соед. цезия высокой чистоты применяют его полигалогениды.
Извлечение радиоактивного изотопа 137Cs (Т1/2 33 г, продукт деления U в ядерных реакторах) из р-ров, полученных при переработке радиоактивных отходов ядерных реакторов, осуществляют методами соосаждения с гексацианоферратами Fe, Ni, Zn или фосфоровольфраматом аммония, ионного обмена на гексацианоферрате Ni, фосфоровольфрамате аммония и др., экстракционным.
Металлич. цезий получают в осн. металлотермии, восстановлением CsCl (кальцием или магнием, 0,1-10 Па, 700-800 °С) с послед. очисткой от примесей ректификацией и вакуумной дистилляцией. По др. способу проводят электролиз расплава CsHal с жидким свинцовым катодом и получают сплав Cs-Pb, из к-рого выделяют металлич. цезий дистилляцией в вакууме. Цезий высокой чистоты получают медленным термич. разложением CsN3 в вакууме (менее 10 Па, 390-395 °С).
Определение. Качественно цезий обнаруживают по характерным линиям спектра 894,35 нм и 852,11 нм. Для микрохим. обнаружения используют осаждение Cs3[Sb2Cl9], Cs3[Bi2I9], Cs[SnI5] и др. менее избирательные р-ции. Наиб. распространенные методы определения микроколичеств цезия- эмиссионная пламенная фотометрия и атомно-абсорбционная спектрометрия. Применяют также радиохим. метод изотопного разбавления и нейтронно-активационный анализ.
При высоком содержании цезия в пробе его определяют гравиметрически в виде Cs[B(C6H5)4], Cs[Bi2I9,], Cs2[TeI6], Cs3[Co(NO2)6] и нек-рых др. солей. В гораздо меньшей степени используют титриметрич. и спектрофотометрич. методы.
Применение. Металлич. цезий- компонент материала катодов для фотоэлементов, фотоэлектронных умножителей, телевизионных передающих электронно-лучевых трубок, термоэмиссионных электронно-оптич. преобразователей. Цезий используют в вакуумных электронных приборах (как геттер), выпрямителях, атомных стандартах времени. Цезиевые "атомные часы" необыкновенно точны. Их действие основано на переходах между двумя состояниями атома цезия- с параллельной и антипараллельной ориентацией собств. магн. моментов ядра атома и валентного электрона; этот переход сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). Пары цезия- рабочее тело в магнитогидродинамич. генераторах, газовых лазерах, ионных ракетных двигателях. Радионуклид 137Cs используют для g-дефектоскопии, в медицине для диагностики и лечения. Цезий-теплоноситель в ядерных реакторах, компонент смазочных материалов для космич. техники.
Мировое произ-во цезия и его соединений (без СНГ) ок. 10 т в год.
Хранят цезий в ампулах из стекла пирекс в атмосфере Аr или стальных герметичных сосудах под слоем обезвоженного масла (вазелинового, парафинового). Утилизируют обработкой остатков металла пентанолом.

СВОЙСТВА ГАЛОГЕНИДОВ ЦЕЗИЯ

Показатель
СsF
CsHF2
CsCl
CsBr
CsI
Сингония
Кубич.а
Тетрагон.
Кубич.
Кубич.
Кубич.
Кубич.
Кубич.
Кубич.
Кубич.
Кубич.
Параметр кристаллич. решетки а, нм
0,601
0,614б
0,412
0,411
0,694
0,429
0,723
0,457
0,766
Число формульных единиц в ячейке
4
1
1
4
1
4
1
4
Пространств. группа
FтЗт
I4/тст
Рт3т
_
Рт3т
Fm3m
Рт3т
Fт3т
Рт3т
Fт3т
Т. пл., °С
703
58в
177в
180
470в
646
_
637
_
632
Т. кип., °С
1253
_
_
_
_
1295
_
1297
_
1280
Плотн. (25 °С), г/см3
3,59г
3,68
3,81
_
3.983
_
4,43
_
4,509
_
6014-30.jpg Дж/(моль х К)
51,09
87,34
52,47
52,93
52,47
6014-31.jpg кДж/моль
-557,1
-923 ,2
4,15д
-442,3
2,93д
-405,6
-348,1
6014-32.jpg кДж/моль
21,7
2,43д
2,76
20,38
23,6
25,65
6014-33.jpg Дж/(моль х К)
92,96
135,3
101,17
112,94
122,20
Показатель преломления при 20 °С(6014-34.jpg589 нм)
1,480
1,6397
1,6984
1,7876

а Гранецентрир., при высоких давлениях существует объемноцентрир. кубич. модификация. б с = 0,784 нм. вТ-ра полиморфного перехода. г При 20 оС.6014-35.jpg полиморфного перехода.

Цезий открыли Р. Бунзен и Г. Кирхгоф в 1861; впервые выделил металлич. цезий в 1882 К. Сеттерберг.

Лит.: Плющев В. Е., Степин Б. Д., Химия и технология соединений лития, рубидия и цезия, М., 1970; Коган Б.И., Названова В. А., Солодов Н.А., Рубидий и цезий, М., 1971; Плющев В. Е., Степин Б.Д., Аналитическая химия рубидия и цезия, М., 1975; Мозговой А. Г. [и др.], в кн.: Обзоры по теплофизическим свойствам веществ, М., 1985, № 1, с. 3-108; Степин Б. Д., Цветков А.А., Неорганическая химия, М., 1994; Hart W. А. [а. о.], The chemistry of lithium, sodium, potssium, rubidium, cesium and francium, Oxf., 1975.

Л. И. Покровская.

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн