5.2. Критическое давление и скорость. Сопло Лаваля

Если перемещение газа по каналу происходит его расширение с уменьшением давления и увеличением скорости, то такой канал называется соплом.

Если в канале происходит сжатие рабочего тела с увеличением его давления и уменьшением скорости, то такой канал называют диффузором.

В каналах при небольшой разности давлений газа и внешней среды скорость течения рабочего тела достаточно большая. В большинстве случаев длина канала небольшая и процесс теплообмена между стенкой и газом незначителен, поэтому процесс истечения газа можно считать адиабатным.

Скорость истечения (на выходе канала) определяется из уравнения:w = w2 = v 2(h1 – h2) . (5.6)

или

w = v 2Ö/(g - 1)·P1·х 1 [1 – (P2/P1)(g-1)/g]. (5.7)

Массовый секундный расход газа, [кг/с]:

m = f·w/х 2 , (5.8)

где: f – площадь сечения канала на выходе.

Так как процесс истечения адиабатный, то:

m = f·Ö 2g/(g - 1)·P1 1·[(P2/P1)2/g – (P2/P1)(g+1)/g]. (5.9)

Массовый секундный расход идеального газа зависит от площади выходного канала, начального состояния газа и степени его расширения.

Критическим давлением называется такое давление на выходном сечении канала, при котором достигается максимальный расход газа и определяется следующим выражением:

PК = P2 = bК·P1 , (5.10)

где: PК = (2/(g + 1))г/(г-1) .

для одноатомных газов: g =1,66 q bК = 0,49 ;

для двухатомных газов: g =1,4 q bК = 0,528 ;

для трехатомных газов: g =1,3 q bК = 0,546 .

Критической скоростью называется скорость газа в выходном сечении канала, при давлении равном или меньшем критического - PК.

wК = Ö 2(g/(g + 1))·P1·х 1 . (5.11)

Критическая скорость зависит при истечении идеального газа только от начальных параметров, его природы и равна скорости звука газа (а) при критических параметрах.

wК = а = Ö g·PК·хК . (5.12)

Комбинированное сопло Лаваля предназначено для использования больших перепадов давления и для порлучения скоростей истечения, превышающих критическую или скорость звука. Сопло Лаваля состоит из короткого суживающегося участка и расширяющейсяя конической насадки (Рис.5.1). Опыты показывают, что угол конусности расширяющейся части должен быть равен a = 8-12о. При больших углах наблюдается отрыв струи от стенок канала.



Скорость истечения и секундный расход идеального газа определяются по формулам (5.7) и (5.9).

Длину расширяющейся части сопла можно определить по уравнению:

l = (D – d) / 2·tg(j/2) , (5.13)

где: j - угол конусности сопла;

D - диаметр выходного отверстия;

d - диаметр сопла в минимальном сечении.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ