Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


3.3. МЕТОДЫ РАСЧЕТА СТРОЕНИЯ МОЛЕКУЛ В ЭЛЕКТРОННО-ВОЗБУЖДЕННЫХ СОСТОЯНИЯХ

 Сведения об электронном строении и свойствах органических сое­динений в возбужденных состояниях очень скудны. Они сравнительно мало доступны для эксперимента, и возможность привлечения методов квантовой химии представляется очень важной. Следует отметить, что изучение возбужденных состояний имеет большое значение не только для характеристики оптических свойств молекул, но и для понимания особенностей и механизмов фотохимических реакций.

Приближение Хартри - Фока для молекул с замкнутой оболочкой, описанное в гл. 1, позволяет рассчитать волновую функцию основного состояния Ψо. При изучении электронно-возбужденных состояний в схему расчета необходимо внести некоторые изменения. Наиболее простой модификацией является приближение виртуальных орбиталей [170], в котором все одноэлектронные МО рассчитываются стан­дартным методом Хартри - Фока для основного состояния при располо­жении на каждой занятой МО пары электронов с противоположными спинами. После нахождения самосогласованных коэффициентов разло­жения МО по АО, энергий МО и полной энергии молекулы, один из электронов "переносится" с занятой МО m на вакантную МО r. Энер­гию такого перехода вычисляют как разность энергий электрона на этих МО:

Е(m→r) = Е(r) -Е(m) - (Jmr– 2Kmr),

где Jmrи Kmr - кулоновский и обменный интегралы,

Jmr= <mm|rr>; Kmr= <mr|mr>.

Величина (Jmr – 2Kmr) учитывает образование вакансии на МО m при электронном переходе m→z. Основной недостаток приближения виртуальных орбиталей заключается в том„ что все МО при электронном переходе считаются неизменными.

Другими способами, широко используемыми для изучения геометрии и электронной структуры молекул в возбужденных состояниях, являют­ся ограниченный и неограниченный методы Хартри-Фока для откры­тых оболочек и полуэлектронный метод Дьюара.

Уравнения, необходимые для проведения расчетов ограниченным ме­тодом Хартри-Фока электронных волновых функций для соединений с открытыми оболочками, получены Рутаном [2]. Они значительно сложнее, чем для систем с замкнутыми оболочками, но в работах [171- 174] предложены вполне приемлемые способы их решения, и в настоящее время ограниченный метод Хартри-Фока применяется не­которыми авторами для неэмпирических расчетов геометрии возбуж­денных состояний. При использовании неограниченного метода Хартри-Фока для каждой электронной пары вводят два разных набора линейных ком­бинаций АО, соответствующих электронам с разными спинами. Каж­дое электронное состояние описывается своим набором коэффициентов, определяющих заселенность МО электронами. Коэффициенты разло­жения МО по АО определяются из системы уравнений, полученной в работе [175]. В этом приближении электроны перестают быть спарен­ными, энергии МО для электронов с разными спинами не совпадают (рис. 3.1). Основной недостаток неограниченного метода Хартри-Фока заключается в том, что найденная волновая функция не является собственной функцией квадрата спинового оператора. Таким образом, мы получаем неточное решение, которое может быть улуч­шено лишь введением дополнительной и весьма трудоемкой про­цедуры проектирования. Без проектирования энергии возбужденных состояний, вычисленные этим методом, получаются сильно зани­женными.

Pис. 3.1. Заполнение МО электронами при расчете волновых функций возбужденных состояний. а — неограниченный метод Хартри—Фока; б — полуэлектронный метод Дьюара

В основу полуэлектронного метода Дьюара [176] положены стан­дартные уравнения Рутана для молекул с замкнутыми оболочками, когда на каждой МО находятся по два электрона, но с измененным числом электронов на двух МО, между которыми произошел элект­ронный переход. Такое описание возбужденного состояния с сохра­нением стандартных формул ограниченного метода Хартри-Фока для систем с замкнутыми оболочками, по существу, означает заселение МО, занятых одним электроном, двумя половинками электрона с про­тивоположными спинами (см. рис. 3.1). При этом в матричные эле­менты фокиана войдут интегралы кулоновского взаимодействия между половинками электрона, и неправильно будет учтено обменное взаимо­действие между неспаренными электронами. Необходимые в связи с этим поправки Дьюар предложил ввести в итоговые величины полной энергии, сохранив стандартные выражения Рутана для вычисления мат­ричных элементов фокиана. В таком приближении обычные програм­мы для молекул с замкнутыми оболочками изменяются при переходе к изучению возбужденных состояний в наименьшей степени. При этом, однако, коэффициенты разложения МО по базису АО определяются с помощью минимизации неточного выражения для полной энергии. В этом заключается основной недостаток полуэлектронного метода Дьюара.

Наиболее точные результаты для электронно-возбужденных состоя­ний можно получить методом конфигурационного взаимодействия (KB), краткое описание которого дано во введении. При использо­вании полуэмпирических методов обычно учитывают взаимодействие только между однократно возбужденными состояниями. В этом вариан­те метода KB волновые функции синглетных электронно-возбужденных состояний Ψmr, вычисленные в приближении виртуальных орбиталей, составляют базисный набор:

Ψm→r= const det[φ1(1)α(1)φ1(1')β(1')...

...φm-1(m - 1)β(m - 1)φ(m')β(m')...

... φn(n)α(n)φn(n')β(n')φr(r)α(r)].

Линейные комбинации этих функций дают более точные волновые функции возбужденных состояний.

здесь m, r, q и t- индексы, которые могут варьироваться от 1 до N, где N - заданный размер матрицы KB (может варьироваться в широких пределах). Коэффициенты Сqtmr определяются диагонализацией матрицы, построенной из элементов <Ψmr|H|Ψmr>. Функции Ψmrявляются однодетерминантными, Фqt, - многодетерминантными. Однако для большинства электронно-возбужденных состояний основной вклад в Фqt дает только одна однодетерминантная функция, а другие вносят лишь небольшую поправку, отражающую изменение МО при возбуждении.

 

Таблица 3.2 Геометрия молекул в нижнем синглетном электронно-возбужденном состоянии

Метод

HCN

Н2СО

C2H2

CN, нм

Н-С-Н, град

С—О, нм

α*1, град

С—С, нм

Н-С-Н, град

Вирт. МО,

ППДП/2 KB

ППДП/2

ОСТ-4ГФ

4-31 ГФ

ОМХФ*2, МЧПДП/3

ПЭ*3, МЧПДГ/3

Эксперимент

0,130

 

0,130

0,137

0,130

-

-

0,130

129

 

127

112

127

-

-

125

0,128

 

0,128

0,131

0,127

0,127

0,125

0,132

0

 

31

28

15

38

29

31

0,134

 

0,133

0,137

0,137

0,135

0,135

0,139

137

 

136

121

125

124

124

120

*1 Угол между плоскостью Н—С—Н и связью С=О.

*2 Ограниченный метод Хартри-Фока.

*3 Полуэлектронный метод Дьюара.

Преимущества и недостатки каждого из рассмотренных выше мето­дов исследованы еще недостаточно, но, по-видимому, все они вполне пригодны для расчета геометрии и электронной структуры возбужден­ных состояний органических соединений. Примеры расчетов геометрии синглетных возбужденных состояний разными методами приведены в таблице 3.2. Согласие с экспериментом получается неплохое. При этом следует отметить, что для спектроскопии и фотохимии нужны не аб­солютные значения геометрических параметров, приведенные в таблице, а их изменение при электронном возбуждении; последнее передается квантовохимическими методами намного точнее.

С точки зрения затрат машинного времени наиболее экономичным является полуэлектронный метод Дьюара [177], поэтому он наиболее широко используется в полуэмпирических расчетах. Неэмпирические вычисления чаще всего проводят неограниченным методом Хартри-Фока, однако это, по-видимому, связано с тем, что он включен в наиболее широко распространенные программы ГАУССИАН-76, -80 и -82.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн