Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ФОТООКИСЛЕНИЕ

ФОТООКИСЛЕНИЕ, окислительно-восстановит. фотохимическая реакция. Суть фотоокисления составляет перенос электрона от возбужденной молекулы донора D к невозбужденной молекуле акцептора А. Фотоокисление состоит из неск. стадий и начинается с поглощения донором квантов света hv (h - постоянная Планка, v - частота), к-рое приводит к переходу электрона с высшей занятой мол. орбитали (ВЗМО) на низшую свободную мол. орбиталь (HCMO) и образованию возбужденных частиц D*. В присут. невозбужденных молекул А электрон переходит с HCMO донора D* на HCMO акцептора А. В результате происходит окисление донора D*, энергетически невозможное для обычного термич. (темнового) переноса электрона с ВЗМО донора на HCMO акцептора. При переносе электрона между D* и А образуются радикальные продукты D+* (D*) в том случае, если в качестве донора выступает нейтральная молекула D или анион D-, либо продукты нерадикальной природы D(D+), если донором электрона является анион-радикал D* или нейтральный радикал D. Соотв. радикальные или нерадикальные продукты образуются из акцептора (подробнее см. Фотоперенос электрона).

Изменение энергии Гиббса AG при фотоокислении выражается соотношением 5034-27.jpg или 5034-28.jpg где Ip -потенциал ионизации D; Еа - сродство к электрону А; 5034-29.jpg -энергия кванта света hv; 5034-30.jpg- потенциалы полуволны соотв. полярографич. окисления D и восстановления А. Условие протекания фотоокисления- выполнение неравенства 5034-31.jpg Скорость фотоокисления зависит от ряда параметров, определяющих в первую очередь 5034-32.jpg р-ции (E1/2 партнеров, энергия возбуждения D, собств. потенц. барьер р-ции, заряды и радиусы D и А и др.).

Константа скорости kнабл близка к значению константы скорости диффузии в диффузионной области протекания (см. Реакции в растворах).

Промежут. стадии можно объединить след. схемой (для жидких р-ров):

5034-33.jpg

Здесь 1 означает комплекс, образуемый в результате встреч D* и А; 2 - ион-радикальную пару - продукт переноса электрона в комплексе 1; 3 - ион-радикалы, вышедшие в объем р-ра из клетки, образуемой молекулами р-рителями для радикальной пары. Если фотоокисление протекает с участием орг. молекул донора, то D* вступает в р-цию в возбужденном синглетном или триплетном состоянии. Для достижения макс. выхода продуктов р-ции между 5034-34.jpg , протекающей через трип-летное состояние D*, требуемая концентрация А обычно на неск. порядков меньше, чем в случае р-ции, протекающей через синглетное возбужденное состояние, что является следствием существенного различия (на неск. порядков) во временах жизни триплетных и синглетных возбужденных состояний. С диссоциацией пары конкурирует геминальная рекомбинация с образованием пары исходных (не возбужденных) реагентов D...А, вероятность этого процесса зависит, в частности, от мультиплетности состояний 5034-35.jpg и D...А. Напр., геминальная рекомбинация триплетной пары является процессом, запрещенным по спину, синглетная пара преим. рекомбинирует (спин-разрешенный переход) с образованием исходных реагентов (см. Клетки эффект).

Выход продуктов фотоокисления существенно зависит от св-в среды, прежде всего ее диэлектрич. проницаемости. В неполярной и малополярной средах выход 5034-36.jpg резко падает, что связано с уменьшением энергии сольватации ион-радикалов.

Помимо описанного процесса с образованием электронно-возбужденной молекулы D*, фотоокисление часто протекает в присут. третьего реагента - фотосенсибилизатора S. При этом первичным 5034-38.jpg5034-37.jpg процессом может быть фотоокисление сенсибилизатора с послед, его термич. регенерацией 5034-39.jpg ). Как в несенсибилизированном, так и сенсибилизированном фотоокислении образование возбужденных D* и S*, участвующих в первичном процессе окисления, происходит вследствие поглощения ими квантов света (непосредств. фотовозбуждение). Образование D* или S* может происходить также в результате безызлучат. переноса энергии от возбужденных молекул M к D или S (сенси-билизир. фотовозбуждение): 5034-40.jpg;5034-41.jpg5034-42.jpg . Наиб. распространенное сенсибилизир. фотоокисление с участием синглетного кислорода: переход O2 из основного (триплетного) состояния в возбужденное (синглетное).

Первичные (радикальные) продукты фотоокисления участвуют в дальнейших превращениях с образованием конечных стабильных продуктов, конкурируя с рекомбинацией в объеме 5034-43.jpg , к-рая обусловливает обратимость фотоокисления. Оно может стать необратимым, если первичные продукты 5034-44.jpg способны к быстрым внутримол. превращениям с образованием новых промежут. продуктов 5034-45.jpg или 5034-46.jpg, не способных к объемной рекомбинации. Напр., образующийся при фотоокислении (C6H5COO-)* радикал C6H5COO. претерпевает быстрое превращение: C6H5CO.2 5034-47.jpg C6H.5 + CO2; аналогично распадается катион-радикал5034-48.jpg, Повышение необратимости фотоокисления достигается за счет димеризации 5034-49.jpg , рекомбинации 5034-50.jpg, а также надмол. организации среды (образование мицелл, везикул и т. п.).

Фотоокисление- одно из наиб, распространенных и важных фотопревращений. Оно составляет сущность первичной стадии фотосинтеза зеленых растений, лежит в основе фотохим. синтеза мн. в-в, фотодеструктивного окисления полимеров и окрашенных материалов, фотохим. преобразования и запасания солнечной энергии, спектральной сенсибилизации в фотографич. процессе. Фотоокисление протекает в гомогенных р-рах, гетерогенных системах, полимерах, твердых телах в широком интервале т-р.

Лит.: Теренин А.Н., Фотоника молекул красителей и родственных органических соединений, Л., 1967; Введение в фотохимию органических соединений, под ред. Г.О. Беккера, Л., 1976; Чибисов А.К., "Успехи химии", 1981, т. 50, в. 7, с. 1169-96; Photoinduced electron transfer, pt A, eds. M.A. Fox, M. Chanon, Amst., 1988. А.К. Чибисов.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн