Гелий (лат. Helium), символ Не, химический элемент VIII группы периодической системы, относится к инертным газам; порядковый номер 2, атомная масса 4,0026; газ без цвета и запаха. Природный гелий состоит из 2 стабильных изотопов: 3He и 4He (содержание 4He резко преобладает).

  Впервые гелий был открыт не на Земле, где его мало, а в атмосфере Солнца. В 1868 француз Ж. Жансен и англичанин Дж. Н. Локьер исследовали спектроскопически состав солнечных протуберанцев. Полученные ими снимки содержали яркую жёлтую линию (т. н. D3-линию), которую нельзя было приписать ни одному из известных в то время элементов. В 1871 Локьер объяснил её происхождение присутствием на Солнце нового элемента, который и назвали гелием (от греч. helios — Солнце). На Земле гелий впервые был выделен в 1895 англичанином У. Рамзаем из радиоактивного минерала клевеита. В спектре газа, выделенного при нагревании клевеита, оказалась та же линия.

  Гелий в природе. На Земле гелия мало: 1 м3 воздуха содержит всего 5,24 см3 гелия, а каждый килограмм земного материала — 0,003 мг гелия. По распространённости же во Вселенной гелий занимает 2-е место после водорода: на долю гелия приходится около 23% космической массы.

  На Земле гелий (точнее, изотоп 4He) постоянно образуется при распаде урана, тория и других радиоактивных элементов (всего в земной коре содержится около 29 радиоактивных изотопов, продуцирующих 4He).

  Примерно половина всего гелия сосредоточена в земной коре, главным образом в её гранитной оболочке, аккумулировавшей основные запасы радиоактивных элементов. Содержание гелия в земной коре невелико — 3 · 10-7% по массе. Гелий накапливается в свободных газовых скоплениях недр и в нефтях; такие месторождения достигают промышленных масштабов. Максимальные концентрации гелия (10—13%) выявлены в свободных газовых скоплениях и газах урановых рудников и (20—25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше гелия в составе природных газов. Вулканическим газам свойственно обычно низкое содержание гелия.

  Добыча гелия в промышленных масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5% по объёму); рядовые (0,10—0,50) и бедные < 0,10). В СССР природный гелий содержится во многих нефтегазовых месторождениях. Значительные его концентрации известны в некоторых месторождениях природного газа Канады, США (шт. Канзас, Техас, Нью-Мексико, Юта).

  В природном гелии любого происхождения (атмосферном, из природных газов, из радиоактивных минералов, метеоритном и т.д.) преобладает изотоп 4He. Содержание 3He обычно мало (в зависимости от источника гелия оно колеблется от 1,3 · 10-4 до 2 · 10-8%) и только в гелии, выделенном из метеоритов, достигает 17—31,5%. Скорость образования 4He при радиоактивном распаде невелика: в 1 т гранита, содержащего, например, 3 г урана и 15 г тория, образуется 1 мг гелия за 7,9 млн. лет; однако, поскольку этот процесс протекает постоянно, за время существования Земли он должен был бы обеспечить содержание гелия в атмосфере, литосфере и гидросфере, значительно превышающее наличное (оно составляет около 5 · 1014 м3). Такой дефицит гелия объясняется постоянным улетучиванием его из атмосферы. Лёгкие атомы гелия, попадая в верхние слои атмосферы, постепенно приобретают там скорость выше 2-й космической и тем самым получают возможность преодолеть силы земного притяжения. Одновременное образование и улетучивание гелия приводят к тому, что концентрация его в атмосфере практически постоянна.

  Изотоп 3He, в частности, образуется в атмосфере при бета-распаде тяжёлого изотопа водорода  — трития (Т), возникающего, в свою очередь, при взаимодействии нейтронов космического излучения с азотом воздуха:

 

  Ядра атома 4He (состоящие из 2 протонов и 2 нейтронов), называют альфа-частицами или гелионами, — самые устойчивые среди составных ядер. Энергия связи нуклонов (протонов и нейтронов) в 4He имеет максимальное по сравнению с ядрами других элементов значение (28,2937 Мэв); поэтому образование ядер 4He из ядер водорода (протонов) 1Н сопровождается выделением огромного количества энергии. Считают, что эта ядерная реакция: 41H = 4He +2b+ + 2n [одновременно с 4He образуются 2 позитрона (b +) и 2 нейтрино (n)] служит основным источником энергии Солнца и других схожих с ним звёзд. Благодаря этому процессу и накапливаются весьма значительные запасы гелия во Вселенной.

  Физические и химические свойства. При нормальных условиях гелий — одноатомный газ без цвета и запаха. Плотность 0,17846 г/л, tkип — 268,93°С. Гелий — единственный элемент, который в жидком состоянии не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. Наименьшее давление перехода жидкого гелия в твёрдый 2,5 Мн/м2 (25 am), tпл при этом равна — 272,1°С. Теплопроводность (при 0°С) 143,8 · 10-3 вт/см (K [343,4 · 10-6 кал/(см (град (сек)]. Радиус атома гелия, определённый различными методами, составляет от 0,85 до 1,33 . В 1 л воды при 20°С растворяется около 8,8 мл гелия. Энергия первичной ионизации гелия больше, чем у любого другого элемента, — 39,38 · 10-13дж (24,58 эв); сродством к электрону гелий не обладает. Жидкий гелий, состоящий только из 4He, проявляет ряд уникальных свойств (см. ниже).

  До настоящего времени попытки получить устойчивые химические соединения гелия оканчивались неудачами (см. Инертные газы). Спектроскопически доказано существование в разряде иона He2+. В 1967 советские исследователи В. П. Бочин, Н. В. Закурин, В. К. Капышев сообщили о синтезе в зоне дугового разряда за счёт реакции гелия с фтором, с BF3 или с RuF5 ионов HeF+, HeF22+ и HeF2+. Согласно расчёту, величина энергии диссоциации иона HeF+ равна 2,2 эв.

  Получение и применение. В промышленности гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1% гелия). От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов.

  Благодаря инертности гелий широко применяют для создания защитной атмосферы при плавке, резке и сварке активных металлов. Гелий менее электропроводен, чем другой инертный газаргон, и поэтому электрическая дуга в атмосфере гелия даёт более высокие температуры, что значительно повышает скорость дуговой сварки. Благодаря небольшой плотности в сочетании с негорючестью гелия применяют для наполнения стратостатов. Высокая теплопроводность гелия, его химическая инертность и крайне малая способность вступать в ядерную реакцию с нейтронами позволяют использовать гелий для охлаждения атомных реакторов. Жидкий гелий — самая холодная жидкость на Земле, служит хладагентом при проведении различных научных исследований. На определении содержания гелия в радиоактивных минералах основан один из методов определения их абсолютного возраста (см. Геохронология). Благодаря тому что гелий очень плохо растворим в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам (замена азота на гелий предотвращает появление кессонной болезни). Изучаются возможности применения гелия и в атмосфере кабины космического корабля.

  С. С. Бердоносов, В. П. Якуцени.

  Гелий жидкий. Относительно слабое взаимодействие атомов гелия приводит к тому, что он остаётся газообразным до более низких температур, чем любой другой газ. Максимальная температура, ниже которой он может быть сжижен (его критическая температура TK), равна 5,20 К. Жидкий гелий — единственная незамерзающая жидкость: при нормальном давлении (рис. 1) гелий остаётся жидким при сколь угодно низких температурах и затвердевает лишь при давлениях, превышающих 2,5 Мн/м2 (25 am).

  При температуре Tl =2,19 К и нормальном давлении жидкий гелий испытывает фазовый переход второго рода. Гелий выше этой температуры называется Не I, ниже — Не II. При температуре фазового перехода наблюдаются аномальное возрастание теплоёмкости (т. н. l-точка, рис. 2), излом кривой температурной зависимости плотности гелия (рис. 3) и др. характерные явления.

  В 1938 П. Л. Капица открыл у Не II сверхтекучесть — способность течь практически без вязкости. Объяснение этого явления было дано Л. Д. Ландау (1941) на основе квантовомеханических представлений о характере теплового движения в жидком гелии.

  При низких температурах это движение описывается как существование в жидком гелии элементарных возбуждений — фононов (квантов звука), обладающих энергией e·= hv (v — частота звука, h — постоянная Планка) и импульсом р = e/c (с = 240 м/сек — скорость звука). Число и энергия фононов растут с повышением температуры Т. При T > 0,6 К появляются возбуждения с большими энергиями (ротоны), для которых зависимость e(p) имеет нелинейный характер. Фононы и ротоны (см. Квазичастицы) обладают импульсом и, следовательно, массой. Отнесённая к 1 см, эта масса определяет плотность rn т. н. нормальной компоненты жидкого гелия. При низких температурах rn стремится к нулю при Т ® 0. Движение нормальной компоненты, как и обычного газа, имеет вязкостный характер. Остальная часть жидкого гелия, т. н. сверхтекучая компонента, движется без трения; её плотность rs = rrn. При Т ® Tl rn ® r, так что в l-точке rs обращается в нуль и сверхтекучесть исчезает (Не I — обычная вязкая жидкость).

  Т. о., в жидком гелии одновременно могут происходить два движения с различными скоростями.

  На основе этих представлений удаётся объяснить ряд наблюдаемых эффектов: при вытекании He II из сосуда через узкий капилляр температура в сосуде повышается, т.к. вытекает главным образом сверхтекучая компонента, не несущая с собой теплоты (т. н. механокалорический эффект); при создании разности температур между концами закрытого капилляра с Не II в нём возникает движение (термомеханический эффект) — сверхтекучая компонента движется от холодного конца к горячему и там превращается в нормальную, которая движется навстречу, при этом суммарный поток отсутствует. В жидком гелии может распространяться звук двух видов — обычный и т. н. второй звук. При распространении второго звука в местах сгущения нормальной компоненты происходит разрежение сверхтекучей.

  Всё сказанное относится к обычному гелию, состоящему в основном из изотопа 4He. Более редкий изотоп 3He имеет иные, чем у 4He, квантовые свойства (см. Квантовая жидкость). Жидкий 3He — также незамерзающая жидкость (TK = 3,33 К), но не обладающая сверхтекучестью: вязкость 3He неограниченно возрастает с понижением температуры.

  Л. П. Питаевский.

 

  Лит.: Кеезом В., Гелий, пер. с англ., М., 1949; Фастовский В. Г., Ровинский А. Е., Петровский Ю. В., Инертные газы, М., 1964; Халатников И. М., Введение в теорию сверхтекучести, М., 1965; Смирнов Ю. Н., Гелий вблизи абсолютного нуля, «Природа», 1967, № 10, с. 70; Якуцени В. П., Геология гелия, Л., 1968. См. также лит. к ст. Инертные газы.

 


Рис. 2. Теплоёмкость жидкого 4He вблизи l-точки. Кривая имеет характерную форму, напоминающую греческую букву l.


Рис. 1. Диаграмма состояния 4He.


Рис. 3. Плотность r жидкого 4He вблизи l-точки.