Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


Воздух

Воздух, естественная смесь газов, главным образом азота и кислорода, составляющая земную атмосферу. Под действием воздуха и воды совершаются важнейшие геологические процессы на поверхности Земли, формируется погода и климат. Воздух является источником кислорода, необходимого для нормального существования подавляющего числа живых организмов (см. Дыхание, Аэробы). Сжиганием топлива на воздуха человечество издавна получает необходимое для жизни и производственной деятельности тепло (см. Горение). Воздух — один из важнейших источников химического сырья.

  Сухой воздух состоит из следующих газов (% по объёму): азота N2 78,09; кислорода O2 20,95; аргона Ar 0,93; углекислого газа CO2 0,03. Воздух содержит очень небольшие количества остальных инертных газов, а также водорода H2, озона О3, окислов азота, окиси углерода СО, аммиака NH3, метана CH4, сернистого газа SO2 и др. (подробнее о составе сухого воздуха см. таблицу в ст. Атмосфера). Учитывая молекулярную массу каждого компонента и его долю в составе воздуха, можно рассчитать среднюю молекулярную массу воздуха, равную 28,966 (приблизительно 29). Содержание в воздухе азота, кислорода и инертных газов практически постоянно, причём постоянная концентрация O2 (и отчасти N2) поддерживается растительным миром Земли (см. Фотосинтез, Азотфиксация). Содержание в воздухе углекислого газа, окислов азота, сернистых соединений существенно колеблется (в частности, возрастает вблизи больших городов и промышленных предприятий; см. также Воздушный бассейн). Содержание воды в воздухе непостоянно и может составлять от 0,00002 до 3% по объёму (см. Влажность воздуха). В воздухе всегда находится большое число мелких твёрдых частичек — пылинок (от нескольких млн. в 1 м3 чистого комнатного воздуха до 100—300 млн. в 1 м3 воздухе больших городов, см. Аэрозоли). Такие частички зачастую служат центрами конденсации атмосферной влаги и являются причиной образования туманов. Воздух проникает в почву, составляя от 10 до 23—28% её объёма. Почвенный воздух, благодаря биологическим процессам в почве, существенно отличается от обычного по составу; он содержит (по объёму): 78—80% O2, 0,1—20,0% N2 и 0,1—15,0% CO2.

  Историческая справка. Учёные древности считали воздух одним из элементов, из которых состоит всё существующее. Анаксимен из Милета (6 в. до н. э.) называл воздух «первоматерией», а Эмпедокл (5 в. до н. э.) и Аристотель (4 в. до н. э.) — одним из четырёх элементов — стихий (наряду с огнём, водой и землёй), в которых заключены все присущие материи свойства. Представление о воздухе как о самостоятельном индивидуальном веществе господствовало в науке до конца 18 в. В 1775—77 французский химик А. Лавуазье показал, что в состав воздуха входят открытые незадолго до того химические элементы азот и кислород. В 1894 английские учёные Дж. Рэлей и У. Рамзай обнаружили в воздухе ещё один элемент — аргон, затем в воздухе были открыты и другие инертные газы.

  Большую роль в истории науки сыграло изучение физических свойств воздуха. Итальянский учёный Г. Галилей (1632) нашёл, что воздух в 400 раз легче воды. Итальянские учёные В. Вивиани и Э. Торричелли (1643) открыли существование атмосферного давления и изобрели для его измерения барометр. Французский учёный Б. Паскаль обнаружил уменьшение атмосферного давления с высотой. Изучая соотношение между давлением и объёмом воздуха, Р. Бойль и Р. Тоунлей (1662) в Англии и Э. Мариотт (1676) во Франции открыли закон, названный их именами (см. Бойля — Мариотта закон); в дальнейшем, с развитием науки были установлены и другие газовые законы (см. Газы). Долгое время воздух и его главные компоненты не удавалось превратить в жидкость, и потому их считали «постоянными» газами. Неудача попыток сжижения воздуха была объяснена лишь после того, как Д. И. Менделеев (1860) установил понятие критической температуры и давления. В 1877, используя охлаждение воздуха до температуры ниже критической (около —140°С) под высоким давлением, Л. П. Кальете (Париж) и Р. Пикте (Женева) удалось превратить воздух в жидкость. В 1895 немецкий инженер К. Линде сконструировал и построил первую промышленную установку для сжижения воздуха (см. Сжижение газов).

  Физические свойства. Давление воздуха при 0°С на уровне моря 101325 н/м2 (1,01325 б, 1 aт, 760 мм рт. cт.); в этих условиях масса 1 л воздуха равна 1,2928 г. Для большинства практических целей воздух можно рассматривать как идеальный газ; в частности, парциальное давление каждого газа, входящего в состав воздуха, не зависит от присутствия других компонентов воздуха (см. Дальтона законы). Критическая температура —140,7°С, критическое давление 3,7 Мн/м2 (37,2 am). Перечисленные ниже свойства воздуха даны при давлении 101325 н/м2 или 1,01325 б (так называемое нормальное давление). Удельная теплоёмкость при постоянном давлении Cp 10,045·103 дж/(кг·К), т. e. 0,24 кал/(г·°С) в интервале 0—100°С, а при постоянном объёме Cv8,3710·103 дж/(кг·К), т. е. 0,2002 кал/(г·°С) в интервале 0—1500°С. Коэффициент теплопроводности 0,024276 вт/(м·К), то есть 0,000058 кал/(см·сек·°С) при 0°С и 0,030136 вт/(м·К), т. е. 0,000072 кал/(см·сек·°С) при температуре 100°С; коэффициент теплового расширения 0,003670 (0—100°С). Вязкость 0,000171 (0°С) и 0,000181 (20°С) мн·сек/м2 (спз). Степень сжимаемости z = pV/p0V0 1,00060 (0°С), 1,09218 (25°С), 1,18376 (50°C); показатель преломления 1,00029; диэлектрическая проницаемость 1,000059 (0°С). Растворимость в воде (в см3 на 1 л воды) 29,18 (0°С) и 18,68 (20°С). Поскольку растворимость кислорода в воде несколько выше, чем азота, соотношение этих газов при растворении в воде изменяется и составляет соответственно 35% и 65%. Скорость звука в воздухе при 0°С около 330 м/сек.

  Жидкий воздух — голубоватая жидкость с плотностью 0,96 г/см3 (при—192°С и нормальном давлении). Свободно испаряющийся при нормальном давлении жидкий воздух имеет температуру около —190°С. Состав его непостоянен, так как азотаргон) улетучивается быстрее кислорода. Фракционное испарение жидкого воздуха используют для получения чистого азота и кислорода, аргона и других инертных газов. Жидкий воздух хранят и транспортируют в дьюара сосудах или в резервуарах специальной конструкции — танках. Сжатый воздух хранят в стальных баллонах при 15 Мн/м2 (150 am); окраска баллонов чёрная с белой надписью «Воздух сжатый».

  В. Л. Василевский.

  Физиолого-гигиеническое значение воздуха. Колебания содержания азота и кислорода в атмосфере воздуха незначительны и не оказывают существенного влияния на организм человека. Для нормальной жизнедеятельности человека важен процентный состав воздуха, в частности парциальное давление кислорода. Парциальное давление кислорода воздуха над уровнем моря составляет 21331,5 н/м2 (160 мм рт. ст.), при уменьшении его до 18665,1 н/м2 (140 мм рт. ст.) появляются первые признаки кислородной недостаточности, которые легко компенсируются у здоровых людей учащением и углублением дыхания, ускорением кроветока, увеличением количества эритроцитов и т.д. При уменьшении парциального давления до 14 665,4 н/м2 (110 мм рт. ст.) компенсация становится недостаточной и появляются признаки гипоксии, а уменьшение его до 6 666,1—7 999,3 н/м2 (50—60 мм рт. cт.) опасно для жизни. Повышение парциального давления кислорода вплоть до дыхания чистым кислородом (парциальное давление 101325 кн/м2 — 760 мм рт. cт.) переносится здоровыми людьми без отрицательных последствий. При обычном парциальном давлении азот инертен. Увеличение его парциального давления до 0,8—1,2 Мн/м2 (8—12 aт) приводит к проявлению наркотического действия (см. Наркоз). Значительное увеличение процентного содержания азота в воздухе (до 93% и более) вследствие уменьшения парциального давления кислорода может привести к аноксемии и даже смерти. Содержание углекислого газа — физиологического возбудителя дыхательного центра в атмосфере воздуха, составляет обычно 0,03— 0,04% по объёму. Некоторое повышение его концентрации в воздухе промышленных центров несущественно для организма. При высоких концентрациях углекислого газа и снижении парциального давления кислорода может наступить асфиксия. При содержании в воздухе 14—15% CO2 может наступить смерть от паралича дыхательного центра. Увеличение концентрации CO2 в воздухе помещений происходит в основном за счёт дыхания и жизнедеятельности людей (взрослый человек в покое при 18—20°С выделяет около 20 л CO2 в час). Поэтому содержание в воздухе углекислого газа, с одной стороны, и органических соединений, микроорганизмов, пыли и т.п., с другой, увеличиваются одновременно; концентрация CO2 в воздухе помещений является санитарным показателем чистоты воздуха. Содержание CO2 в воздухе жилых помещений не должно превышать 0,1%. Находящиеся в незначительном количестве в атмосфере воздуха инертные газыаргон, гелий, неон, криптон, ксенон при нормальном давлении индифферентны для организма. Обнаруживаемые в атмосфере воздуха в ничтожных концентрациях радиоактивные газы радон и его изотопыактинон и торон, имеющие малый период полураспада, не оказывают неблагоприятного воздействия на человека.

  В атмосфере воздуха обычно обнаруживаются различные микроорганизмы (бактерии, грибки и др.). Однако патогенные микроорганизмы встречаются в воздухе крайне редко, в связи с чем передача инфекционных заболеваний через атмосферу воздуха может происходить в исключительных случаях, например при применении бактериологического оружия, в закрытых помещениях при наличии больных, выделяющих в воздух патогенные микроорганизмы вместе с мельчайшими капельками слюны при кашле, чихании, разговоре. В зависимости от устойчивости микроорганизмов они могут передаваться через воздух как воздушно-капельным, так и воздушно-пылевым путём (наиболее устойчивые, например, возбудители туберкулёза, дифтерии).

  Для жизнедеятельности человека большое значение имеют температура, влажность, движение воздуха. Для обычно одетого человека, выполняющего лёгкую работу, оптимальная температура воздуха 18—20°С. Чем тяжелее работа, тем ниже должна быть температура воздуха. Благодаря совершенным механизмам терморегуляции человек легко переносит изменения температуры и может приспособиться к различным климатическим условиям. Оптимальная для человека относительная влажность воздуха 40—60%. Сухой воздух при всех условиях переносится хорошо. Повышенная влажность воздуха действует неблагоприятно: при высокой температуре она способствует перегреванию, а при низкой температуре переохлаждению организма. Движение воздуха вызывает увеличение теплоотдачи организма. Поэтому при высокой температуре (до 37°С) ветер способствует предохранению человека от перегревания, а при низкой — переохлаждению организма. Особенно неблагоприятна для человека комбинация ветра с низкой температурой и высокой влажностью. Известное значение придаётся ионизации воздуха. Лёгкие ионы с отрицательным зарядом оказывают положительное воздействие на организм. Для ионизации воздуха предложен ряд приборов.

  Г. И. Сидоренко.

  Загрязнение воздуха. Рост масштабов хозяйственной деятельности увеличивает загрязнение воздуха. Развитие промышленности, энергетики, транспорта приводит к повышению содержания в воздухе углекислого газа (на 0,2% от имеющегося в воздуха количества ежегодно) и ряда других вредных газов. Металлургические и химические предприятия и ТЭЦ загрязняют воздух сернистым газом, окислами азота, сероводородом, галогенами и их соединениями. Другим серьёзным источником загрязнения воздуха служит автотранспорт. По некоторым подсчётам, 1 тыс. автомобилей в день выбрасывает с выхлопными газами в воздух 3,2 т окиси углерода, от 200 до 400 кг других продуктов неполного сгорания топлива, 50—150 кг соединений азота. Очень велико загрязнение воздуха твёрдыми частицами. В Питсбурге (США) на 1 кв. миле (259 га) ежегодно осаждается 610 т пыли. Промышленные предприятия, ТЭЦ, автотранспорт, лесные пожары, пыльные бури, возникающие в результате эрозии почв при неправильном землепользовании, повышают концентрацию твёрдых частиц (пыли и дыма) в воздухе настолько, что это существенно (на 20—40%) понижает солнечную радиацию, дошедшую до поверхности земли в районе больших городов. О масштабах таких процессов можно судить хотя бы по тому, что пыльные бури 1930—34 в США унесли до 25 см почвенного слоя и перенесли около 200 млн. т пыли на расстояния до 1000 км.

  Загрязнение воздуха приводит к ухудшению условий жизни человека, животных и растений. Вредное действие на живые организмы при этом вызывается не только первичными компонентами промышленных выбросов, но и образующимися из них новыми токсическими веществами, так называемыми фотооксидантами. Загрязнение воздуха иногда может достигать таких масштабов, что приводит к увеличению заболеваемости и смертности населения. Особую опасность представляют радиоактивные загрязнения воздуха; вследствие постоянных движений воздушных масс они носят глобальный характер (см. Радиоактивное загрязнение). Некоторые загрязнения воздуха вызывают профессиональные заболевания. Влияние загрязнений воздуха на условия жизни весьма велико. В СССР приняты законы об охране природы, предусматривающие необходимость санитарного контроля за состоянием воздуха и ответственность руководителей промышленных предприятий за тщательную очистку и обезвреживание промышленных газов до их выброса в атмосферу (см. Газов очистка). В качестве обязательных мероприятий при планировке и застройке городов и посёлков и размещении промышленных объектов предусматривается создание санитарно-защитных зон (разрывов), вынос вредных в санитарном отношении промышленных предприятий за пределы жилых районов и т.д. (см. Благоустройство населённых мест, Реконструкция города). См. также Воздушный бассейн.

  Анализ воздуха. Предельно допустимые концентрации (обычно в мг на 1 л или на 1 м3 воздуха) вредных и взрывоопасных веществ в производственной воздушной среде регламентируются законодательно. Методы анализа воздуха зависят от агрегатного состояния определяемого вещества. Например, пыль и аэрозоли обычно улавливают ватными или бумажными фильтрами; иногда для улавливания аэрозолей применяют стеклянные фильтры; туманы и газы поглощают главным образом жидкостями. Наиболее распространённые методы определения содержания вредных веществ в воздухефотометрический анализ, нефелометрия и турбидиметрия. Для быстрого определения малых концентраций токсичных и взрывоопасных веществ в воздухе наиболее часто используют автоматические газоанализаторы. Особое место в анализе воздуха занимает определение радиоактивных загрязнений (см. Дозиметрия).

  Воздух в технике. Благодаря содержащемуся в воздухе кислороду, он используется как химический агент в различных процессах. Сюда относятся: горение топлива, выплавка металлов из руд (доменный и мартеновский процессы), промышленное получение многих химических соединений (серной и азотной кислот, фталевого ангидрида, окиси этилена, уксусной кислоты, ацетона, фенола и др.); ценность воздуха как химического агента существенно повышают, увеличивая содержание в нём кислорода. Воздух является важнейшим промышленным сырьём для получения кислорода, азота, инертных газов. Физические свойства воздуха используют в тепло- и звукоизоляционных материалах, в электроизоляционных устройствах; упругие свойства воздуха — в пневматических шинах; сжатый воздух служит рабочим телом для совершения механической работы (пневматические машины, струйные и распылительные аппараты, перфораторы и т.д.).

  Искусственный воздух (точнее — искусственная атмосфера, смеси газов, пригодные для дыхания) впервые был использован в медицине при заболеваниях, сопровождающихся кислородной недостаточностью (40—60% кислорода в смеси с обычным воздухом или 95% кислорода и 5% CO2). Подобные искусственные газовые смеси применяются в высотной авиации, горноспасательном деле. Особое значение имеет искусственный воздух в водолазном деле. Обычный воздух непригоден для работы при давлениях, существенно превышающих нормальное: в этих условиях воздух оказывает наркотическое действие, а повышение растворимости азота в крови и тканях тела делает опасным быстрый подъём водолаза на поверхность. Выделение пузырьков азота из крови может вызвать кессонную болезнь и смерть. Поэтому в последние 10—15 лет испытываются для работ на больших глубинах (в условиях высоких давлений) безазотные газовые смеси, содержащие главным образом гелий (до 96,4%) и кислород (4—2%) под давлением 0,7—2 Мн/м2 (7—20 aт). Такие смеси устраняют опасность кессонной болезни, однако создают определённый дискомфорт из-за высокой теплопроводности гелия; отмечено также существенное изменение тембра голоса в такой атмосфере. Проблема искусственного воздуха решается также при создании обитаемых космических кораблей (см. Атмосфера кабины). Советские космические корабли «Восток» и «Восход» были оборудованы специальной системой, поддерживающей состав воздуха, близкий к обычному: парциальное давление кислорода 20—40 кн/м2, объёмная концентрация CO2 0,5—1%. Американские космические корабли «Джемини» имели чисто кислородную атмосферу при давлении около 0,3 aт.

 

  Лит.: Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958; Некрасов Б. В., Основы общей химии, т. 1, М., 1965; Баттан Л. Дж., Загрязнённое небо, пер. с англ., М., 1967; Арманд Д., Нам и внукам, 2 изд., М., 1966; Соколов В. А., Газы земли, [М., 1966]; Определение вредных веществ в воздухе производственных помещений, 2 изд., М., 1954; Руководство по коммунальной гигиене, т. 1, М., 1961.

 В. Л. Василевский.



     © ХиМиК.ру




Реклама   Обратная связь   Дизайн